Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Gọi ƯCLN( a, b) = d (d số tự nhiên>1)--> 4n + 3 chia hết cho d và 5n + 1 chia hết cho d
-> 20n + 15 chia hết cho d và 20n + 4 chia hết cho d --> (20n + 15) - (20n + 4) chiahết cho d
--> 15 - 4 chia hết cho d --> 11 chia hết cho d --> d = 11 (d0 d > 1)
2/ ab = ƯCLN(a,b).BCNN(a, b) = 2940 --> ƯCLN(a, b) = 2940:BCNN(a,b) = 2940:210 = 14
ƯCLN(a, b) = 14 --> a = 14a' và b= 14b' , trong đó a' và b' là hai số nguyên tố cùng nhau
--> ab = 14a'.14b' = 196a'.b' --> a'.b' = 15 = 15.1; 5.3 vì a> b --> a'>b' .
Nếu: a' = 15 --> a = 14.15 =210
b' = 1 ----> b = 14b' = 14.
Nếu :a' = 5 --> a = 14.a' = 70
b' = 3 --> b = 14.3 = 42.
Bài 1 :
\(a,\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)
Ta có : \(VT=\left(a-b\right)+\left(c-d\right)-\left(a-c\right)\)
\(=a-b+c-d-a+c\)
\(=-\left(b+d\right)=VP\)
\(\Rightarrow\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)
\(b,\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)
Ta có : \(VT=\left(a-b\right)-\left(c-d\right)+\left(b+c\right)\)
\(=a-b-c+d+b+c\)
\(=a+d=VP\)
\(\Rightarrow\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)
1/ Gọi ƯCLN( a, b) = d (d số tự nhiên>1)--> 4n + 3 chia hết cho d và 5n + 1 chia hết cho d
-> 20n + 15 chia hết cho d và 20n + 4 chia hết cho d --> (20n + 15) - (20n + 4) chiahết cho d
--> 15 - 4 chia hết cho d --> 11 chia hết cho d --> d = 11 (d0 d > 1)
a, n + 4 ⋮ n
Ta có : n ⋮ n
=> Để n + 4 ⋮ thì 4 phải chia hết chọn :
Mà n ∈ N => n ∈ { 1 ; 2 ; 4 }
Vậy với n ∈ { 1 ; 2 ; 4 } thì n + 4 ⋮ n .
b, 3n + 7 ⋮ n
Để 3n + 7 ⋮ n thì :
7 ⋮ n ( vì 3n ⋮ n ) mà n ∈ N
n ∈ { 1 ; 7 }
Vậy với n ∈ { 1 ; 7} thì 3n + 7 ⋮ n .
c, 27 - 5n ⋮ n
Để 27 - 5n ⋮ n thì :
27 ⋮ n ( vì 5n ⋮ n ) mà n ∈ N .
n ∈ { 1 ; 3 ; 9 ; 27 }
Vậy với n ∈ { 1 ; 3 ; 9 ; 27 } thì 27 - 5n ⋮ n .
Gọi d là ƯC của 7n + 10 và 5n + 7
Khi đó : 7n + 10 chia hết cho d và 5n + 7 chia hết cho d
<=> 5.(7n + 10) chia hết cho d và 7.(5n + 7) chia hết cho d
<=> 35n + 50 chia hết cho d và 35n + 49 chia hết cho d
=> (35n + 50) - (35n + 49) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau
Gọi d là ƯC của 7n + 10 và 5n + 7
Khi đó : 7n + 10 chia hết cho d và 5n + 7 chia hết cho d
<=> 5.(7n + 10) chia hết cho d và 7.(5n + 7) chia hết cho d
<=> 35n + 50 chia hết cho d và 35n + 49 chia hết cho d
=> (35n + 50) - (35n + 49) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau
Gọi ƯCLN(4n+3; 5n+1) là d. Ta có:
4n+3 chia hết cho d => 20n+15 chia hết cho d
5n+1 chia hết cho d => 20n+4 chia hết cho d
=> 20n+15-(20n+4) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư(11)
=> d thuộc {1; -1; 11; -11}
Mà 4n+3 và 5n+1 không nguyên tố cùng nhau
=> d = 11
=> ƯCLN(4n+3; 5n+1) = d
Chúc bạn học tốt