Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Kẻ \(OH\perp AB\) tại H
Suy ra H là trung điểm của AB
Xét tam giác cân OAB ( do OA=OB=R) có OH vừa là đg trung tuyến, vừa là đường cao, vừa là đường phân giác
Áp dụng hệ thức lượng vào tam giác vuông OAH có:
\(\sin\widehat{AOH}=\dfrac{AH}{AO}\Leftrightarrow AH=sin60^0.AO=\dfrac{\sqrt{3}R}{2}\)
\(\Leftrightarrow\dfrac{AB}{2}=\dfrac{\sqrt{3}R}{2}\Leftrightarrow AB=R\sqrt{3}\)
Vậy...
b) Áp dụng hệ thức lượng vào tam giác vuông OAH có:
\(tan\widehat{AOH}=\dfrac{AH}{OH}\Leftrightarrow AH=tan60^0.\dfrac{R}{2}=\dfrac{R\sqrt{3}}{2}\)
\(\Leftrightarrow\dfrac{AB}{2}=\dfrac{R\sqrt{3}}{2}\Leftrightarrow AB=R\sqrt{3}\)
Vậy...
Đáp án A
Vì M là trung điểm của AB nên ta có:
Theo quan hệ vuông góc giữa đường kính và dây ta có:
OM ⊥ AB
Áp dụng định lí Pytago vào tam giác OAM ta có:
O M 2 = O A 2 - A M 2 = 52 - 42 = 9 ⇒ O M = 3 c m
Đáp án B
Kẻ OH ⊥ AB tại H suy ra H là trung điểm của AB
Xét tam giác OHB vuông tại H có OH = 3; OB = 5 . Theo định lý Pytago ta có:
Mà H là trung điểm của AB nên AB = 2HB = 8 cm
Vậy AB = 8 cm
Chọn đáp án B.
Kẻ OH ⊥ AB tại H suy ra H là trung điểm của AB
Xét tam giác OHB vuông tại H có OH = 3; OB = 5 . Theo định lý Pytago ta có:
Mà H là trung điểm của AB nên AB = 2HB = 8 cm
Vậy AB = 8 cm
Gọi H là trung điểm AB \(\Rightarrow OH\perp AB\Rightarrow OH\) là k/c từ O đến AB
Ta có: \(AH=\dfrac{1}{2}AB=\dfrac{R}{2}\)
Áp dụng định lý Pitago cho tam giác vuông OAH:
\(OA^2=OH^2+AH^2\Leftrightarrow R^2=OH^2+\left(\dfrac{R}{2}\right)^2\)
\(\Rightarrow OH=\dfrac{R\sqrt{3}}{2}\)