K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2015

2a2 + a = 3b+ b => 2a2 - 2b2 + a - b = b2 => 2.(a - b).(a + b) + (a - b) = b2

=> (a - b). (2a + 2b + 1) = b2   (1)

Gọi d = ƯCLN (a-b; 2a + 2b + 1)

=> a - b chia hết cho d và  2a + 2b + 1 chia hết cho d

=> b2 =  (a - b). (2a + 2b + 1) chia hết cho d2

=> b chia hết cho d

Lại có  2(a - b) -  (2a + 2b + 1) chia hết cho d =>  -4b - 1   chia hết cho d

=> 1 chia hết cho d => d =1 => a - b và 2a + 2b + 1 nguyên tố cùng nhau  (2)

(1)(2) => a- b và 2a + 2b + 1 đều là số chính phương

6 tháng 12 2016

có rùi nè, 4b đó: Cho a+b+c=0. 

Tính: 1/(b^2+c^2-a^2)+1/(a^2+c^2-b^2)+1/(a^2+b^2-c^2). đó bài này đó

21 tháng 4 2017

Ta có: \(2a^2+a=3b^2+b\Rightarrow2a^2-2b^2+a-b=b^2\)

\(\Rightarrow2\left(a-b\right)\left(a+b\right)+\left(a-b\right)=b^2\)

\(\Rightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\left(1\right)\)

Đặt \(ƯCLN\left(a-b;2a+2b+1\right)=d\) suy ra:

\(\hept{\begin{cases}\left(a-b\right)⋮d\\2a+2b+1⋮d\end{cases}}\)  \(\Rightarrow b^2=\left(a-b\right)\left(2a+2b+1\right)⋮d^2\)

\(\Rightarrow b⋮d\). Lại có:

\(2\left(a-b\right)-\left(2a+2b+1\right)⋮d\Rightarrow-4b-1⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\Leftrightarrow a-b\) và \(2a+2b+1\) là hai số nguyên tố cùng nhau \(\left(2\right)\)

Kết hợp \(\left(1\right)\) và \(\left(2\right)\) suy ra:

\(a-b\) và \(2a+2b+1\) là các số chính phương (Đpcm)

3 tháng 8 2023

Để chứng minh rằng √(a-b) và √(3a+3b+1) là các số chính phương, ta sẽ điều chỉnh phương trình ban đầu để tìm mối liên hệ giữa các biểu thức này. Phương trình ban đầu: 2^(2+a) = 3^(2+b) Ta có thể viết lại phương trình theo dạng: (2^2)^((1/2)+a/2) = (3^2)^((1/2)+b/2) Simplifying the exponents, we get: 4^(1/2)*4^(a/2) = 9^(1/2)*9^(b/2) Taking square roots of both sides, we have: √4*√(4^a) = √9*√(9^b) Simplifying further, we obtain: 22*(√(4^a)) = 32*(√(9^b)) Since (√x)^y is equal to x^(y/), we can rewrite the equation as follows: 22*(4^a)/ = 32*(9^b)/ Now let's examine the expressions inside the square roots: √(a-b) can be written as (√((22*(4^a))/ - (32*(9^b))/)) Similarly, √(3*a + 3*b + ) can be written as (√((22*(4^a))/ + (32*(9^b))/)) We can see that both expressions are in the form of a difference and sum of two squares. Therefore, it follows that both √(a-b) and √(3*a + 3*b + ) are perfect squares.

4 tháng 2 2021

Ta có: \(2a^2+a=3b^2+b\)

\(\Leftrightarrow\left(2a^2-2b^2\right)+\left(a-b\right)=b^2\)

\(\Leftrightarrow\left(2a+2b\right)\left(a-b\right)+\left(a-b\right)=b^2\)

\(\Leftrightarrow\left(2a+2b+1\right)\left(a-b\right)=b^2\)

*CM 2a+2b+1 và a-b nguyên tố cùng nhau

=> 2a+2b+1 cũng là 1 SCP

DD
4 tháng 2 2021

Ta có: 

\(2a^2+a=3b^2+b\)

\(\Leftrightarrow2a^2-2b^2+a-b=b^2\)

\(\Leftrightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\)

Ta có: 

Đặt \(d=\left(a-b,2a+2b+1\right)\).

\(\Rightarrow\hept{\begin{cases}a-b⋮d\\2a+2b+1⋮d\end{cases}}\Rightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2⋮d^2\Rightarrow b⋮d\)

\(\Rightarrow\left(a-b\right)+b=a⋮d\)

\(\Rightarrow\left(2a+2b+1\right)-2a-2b=1⋮d\Rightarrow d=1\).

Do đó \(a-b,2a+2b+1\)là hai số chính phương. 

https://olm.vn/hoi-dap/detail/92192540983.html

Câu hỏi của La Văn Lết - Toán lớp 8

Bạn tham khảo ở đây nhé

8 tháng 4 2019

Câu hỏi của La Văn Lết - Toán lớp 8 - Học toán với OnlineMath

Em thma khảo bài làm tại link này nhé!

19 tháng 9 2016

thtfgfgfghggggggggggggggggggggg