K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2020

vì 0<x,y,z\(\le\)1 nên (1-x)(1-y) >=0 <=> 1+xy >= x+y

<=> 1+z+xy >= x+y+z

<=> \(\frac{y}{1+z+xy}\le\frac{y}{x+y+z}\left(1\right)\)

tương tự có \(\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\left(2\right);\frac{z}{1+x+xy}\le\frac{z}{x+y+z}\left(3\right)\)

cộng theo vế của (1), (2), (3) ta được

\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{x+y+z}{x+y+z}\le\frac{3}{x+y+z}\)

dấu "=" xảy ra khi x=y=z=1

30 tháng 7 2020

\(\frac{x}{1+y+zx}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\text{Σ}\frac{x}{x^2+xy+zx}=\text{Σ}\frac{x}{x\left(x+y+z\right)}=\frac{3}{x+y+z}\)

Do \(1\ge x^2\)và \(y\ge xy\)

Dấu = xảy ra khi x = y = z = 1

6 tháng 8 2020

Kiểm tra lại đề đê. Với [ a = 1/10, b = 1/3, c = 1/10 ] thì đề sai.

6 tháng 8 2020

(Đề đây nhưng chắc số 3 ở ngoài căn nha, họ đánh nhầm)

14 tháng 4 2020

Kiểm tra lại đề nhé! 

Em thử cho a = b = c xem sao?

14 tháng 4 2020

sửa số 2 thành số 8 nha

26 tháng 10 2020

impostor

26 tháng 10 2020

Vì a, b, c là độ dài ba cạnh của tam giác suy ra :a,b, c >0

Áp dụng bđt cosi ta có

\(a^2+bc\ge2a\sqrt{bc}\)

\(b^2+ac\ge2b\sqrt{ac}\)

\(c^2+ab\ge2c\sqrt{ab}\)

Suy ra 

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ac}}+\frac{1}{2c\sqrt{ab}}\)

\(=\frac{1}{2}\left(\frac{\sqrt{bc}+\sqrt{ac}+\sqrt{ab}}{abc}\right)\left(1\right)\)

Theo bđt cosi \(\frac{a+b}{2}\ge\sqrt{ab}\)

do đó  (1) \(\Leftrightarrow\frac{1}{2}\left(\frac{\sqrt{bc}+\sqrt{ac}+\sqrt{ab}}{abc}\right)\le\frac{1}{2}\left(\frac{\frac{b+c}{2}+\frac{a+c}{2}+\frac{a+b}{2}}{abc}\right)\)

\(=\frac{1}{2}\left(\frac{a+b+c}{abc}\right)=\frac{a+b+c}{2abc}\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{a+b+c}{2abc}\left(đpcm\right)\)

25 tháng 4 2020

\(25.\left(\frac{bc+ab+ac}{abc}\right)+351\ge88.\left(a^2+b^2+c^2\right)\)

\(25\left(\frac{bc+ab+ac}{abc}\right)+351=25.abc.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\right)+351.abc\ge88.\left(a^2+b^2+c^2\right)\)

25.( bc+ ac + ab )+ 351 . abc \(\ge88abc\left(a^2+b^2+c^2\right)\)

Đến đây bạn tự làm tiếp nha ! Mình cũng không chắc về bài này cho lắm

26 tháng 4 2020

jhfjhgfhjfgjhfgjhgjjjjjjjjjjjjjjjjjjjjjjjfgjg