K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2020

Tìm cách giải: A là phân số dương có tử số là 2020 không đổi. Vì vậy, muốn A đạt GTLN thì (a+b) phảo đạt GTNN. Để tìm (a+b)min ta phải tìm các giá trị có thể có của a và b rồi tìm các GTNN của a và b. Ta thấy ngay tù \(\frac{1}{a}+\frac{1}{b}< 1\Rightarrow a,b>1\). Chú ý tính chất nghịch đảo của 1 số tự nhiên m,n khác 0: m>n thì \(\frac{1}{m}< \frac{1}{n}\)

Giải

Do \(\frac{1}{a}+\frac{1}{b}< 1\Rightarrow a,b>1\). Không mất tính tổng quát giả sử: 1<a\(\le b\)

\(\Rightarrow1>\frac{1}{a}\ge\frac{1}{b}\). Ta có \(\frac{1}{a}+\frac{1}{b}\le\frac{1}{a}+\frac{1}{a}\)hay \(\frac{7}{10}\le\frac{2}{a}\Rightarrow2\le2\frac{6}{7}\)

Do a\(\inℕ;a>1\)nên a=2(1)

Với a=2 ta có \(\frac{7}{10}< \frac{1}{2}+\frac{1}{b}< 1\Leftrightarrow\frac{1}{5}< \frac{1}{6}< \frac{1}{2}\Rightarrow b\in\left\{3;4\right\}\left(2\right)\)

Từ (1) và (2) ta có min(a+b)=2+3=5

Vậy maxA=\(\frac{2020}{5}=404\)

23 tháng 2 2016

Để tính GTNN của P=a+b+c thì ta cực tiểu hóa a,b và c (*)

Không giảm tính tổng quát,giả sử \(1\le a\le b\le c\) \(\Rightarrow\frac{1}{a}\ge\frac{1}{b}\ge\frac{1}{c}\)

Ta có :\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\frac{3}{a}\Rightarrow\frac{28}{29}<\frac{3}{a}\)=>1<a<3 và 3/28 =>a E {2;3} do a E N

\(\)

+)a=2=>b>2 từ (*) chọn b=3 và c=7 vì 1/2+1/3+1/7=41/42 mà 28/29<41/42<1

+)a=3=>c >= b >= 3,nếu a=b=c=3 thì 1/a+1/b+1/c=1

Nếu a=3;b ,c >= 4 thì 1/a+1/b+1/c <= 1/3+1/4+1/4=5/6<28/29(loại a=3)

Vậy (a+b+c)min=2+3+7=12

23 tháng 2 2016

nhè mọi người giải giúp tôi nhanh lên!

Câu 1: Có 4 giá trị

Câu 3: \(A\le\dfrac{10}{5}=2\)