Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt biểu thức trên là A
-Trường hợp a chia hết b:
Ta có: A nguyên nên a^2 + b^2 chia hết ab
Do a chia hết b => a^2 chia hết ab. Mà a^2 + b^2 chia hết ab => b^2 chia hết ab <=> b chia hết a
=> a=b
=> (a^2+b^2)/ab= 2a^2/a^2=2
-Trường hợp a không chia hết b, hoặc b không chia hết a:
A= (a^2+b^2-2ab)/ab + 2= (a-b)^2/ab + 2
Do A nguyên nên (a-b)^2/ab nguyên <=> a-b chia hết ab
Mà a,b nguyên nên: a<b(a+1) <=> a−b<ab
Mà a-b chia hết ab => a−b≥ab
=> Phương trình vô nghiệm ở trường hợp này.
Vậy A chỉ thỏa mãn giá trị =2 khi và chỉ khi a=b với a,b thuộc N*
Đặt biểu thức trên là A
-Trường hợp a chia hết b:
Ta có: A nguyên nên a^2 + b^2 chia hết ab
Do a chia hết b => a^2 chia hết ab. Mà a^2 + b^2 chia hết ab => b^2 chia hết ab <=> b chia hết a
=> a=b
=> (a^2+b^2)/ab= 2a^2/a^2=2
-Trường hợp a không chia hết b, hoặc b không chia hết a:
A= (a^2+b^2-2ab)/ab + 2= (a-b)^2/ab + 2
Do A nguyên nên (a-b)^2/ab nguyên <=> a-b chia hết ab
Mà a,b nguyên nên: \(a< b\left(a+1\right)\) <=> \(a-b< ab\)
Mà a-b chia hết ab => \(a-b\ge ab\)
=> Phương trình vô nghiệm ở trường hợp này.
Vậy A chỉ thỏa mãn giá trị =2 khi và chỉ khi a=b với a,b thuộc N*
Dạng này nhìn mệt vãi:(
Do b > 0 nên chia hai vế của giả thiết cho b, ta được: \(a+\frac{2}{b}\le1\)
Bây giờ đặt \(a=x;\frac{2}{b}=y\). Bài toán trở thành:
Cho x, y là các số dương thỏa mãn \(x+y\le1\). Tìm Min:
\(P=x+y+\frac{1}{x^2}+\frac{8}{y^2}\). Quen thuộc chưa:v
Ko biết có tính sai chỗ nào không, nhưng hướng làm là vậy đó!
\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)
Cần cách khác thì nhắn cái
a, x^2 - 2xy + 2y^2 - 2x + 6y + 5 =0
<=> x^2 - 2x(y+1) + y^2 + 2y + 1 + y^2 + 4y + 4 = 0
<=> x^2 - 2x(y+1) + (y+1)^2 + (y+2)^2 =0
<=> (x-y-1)^2 + (y+2)^2 =0
<=> x-y-1 = 0 và y+2 =0
<=> y = -2 => x= -1
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2abc\left(a+b+c\right)}{a^2b^2c^2}=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)
\(\Leftrightarrow A=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
Đặt biểu thức trên là A
-Trường hợp a chia hết b:
Ta có: A nguyên nên a^2 + b^2 chia hết ab
Do a chia hết b => a^2 chia hết ab. Mà a^2 + b^2 chia hết ab => b^2 chia hết ab <=> b chia hết a
=> a=b
=> (a^2+b^2)/ab= 2a^2/a^2=2
-Trường hợp a không chia hết b, hoặc b không chia hết a:
A= (a^2+b^2-2ab)/ab + 2= (a-b)^2/ab + 2
Do A nguyên nên (a-b)^2/ab nguyên <=> a-b chia hết ab
Mà a,b nguyên nên: a<b(a+1) <=> a−b<ab
Mà a-b chia hết ab => a−b≥ab
=> Phương trình vô nghiệm ở trường hợp này.
Vậy A chỉ thỏa mãn giá trị =2 khi và chỉ khi a=b với a,b thuộc N*
tự hỏi tự trả lời