K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2022

:v

15 tháng 3 2022

gie

NV
31 tháng 8 2021

Em kiểm tra lại mẫu số của biểu thức c, chắc chắn đề sai

1 tháng 9 2021

là c\(^4\) ạ

 

13 tháng 2 2020

Bất đẳng thức phụ:

Với \(xy\le\) thì \(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+xy}\) ( biến đổi tương đương )

Áp dụng:\(\frac{1}{1+a}+\frac{1}{1+b}+2017ab\)

\(\le\frac{2}{1+ab}+2017ab\)

Đặt \(x=ab\le1\)

Khi đó:\(LHS\le\frac{2}{1+x}+2017x\)

Đến đây biến đổi tương đương chắc là ra nhỉ

NV
27 tháng 2 2021

\(A=ab+\dfrac{1}{ab}+2=ab+\dfrac{1}{16ab}+\dfrac{15}{16}ab+2\)

\(A\ge2\sqrt{\dfrac{ab}{16ab}}+\dfrac{15}{4\left(a+b\right)^2}+2=\dfrac{25}{4}\)

Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)

27 tháng 2 2021

`A=(a+1/b)(b+1/a)`

`=ab+1+1+1/(ab)`

`=2+ab+1/(16ab)+15/(16ab)`

Áp dụng cosi

`=>ab+1/(16ab)>=1/2`

`ab<=(a+b)^2/4=1/4`

`=>16ab<=4`

`=>15/(16ab)>=15/4`

`=>A>=15/4+1/2+2=25/4`

Dấu "=" xảy ra khi `a=b=1/2`

NV
5 tháng 8 2021

\(abc=1\) nên tồn tại các số dương x;y;z sao cho \(\left(a;b;c\right)=\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)

BĐT cần chứng minh tương đương:

\(\dfrac{y}{x+2y}+\dfrac{z}{y+2z}+\dfrac{x}{z+2x}\le1\)

\(\Leftrightarrow\dfrac{2y}{x+2y}-1+\dfrac{2z}{y+2z}-1+\dfrac{2x}{z+2x}-1\le2-3\)

\(\Leftrightarrow\dfrac{x}{x+2y}+\dfrac{y}{y+2z}+\dfrac{z}{z+2x}\ge1\)

Điều này đúng do:

\(VT=\dfrac{x^2}{x^2+2xy}+\dfrac{y^2}{y^2+2yz}+\dfrac{z^2}{z^2+2xz}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\)

5 tháng 8 2021

e cảm ơn ạ

 

7 tháng 8 2021

Ta có \(-\dfrac{4ab^2}{4b^2+1}\ge-\dfrac{4ab^2}{2\sqrt{4b^2}}=\dfrac{4ab^2}{4b}=ab\)

\(-\dfrac{4a^2b}{4a^2+1}\ge-\dfrac{4a^2b}{2\sqrt{4a^2}}=\dfrac{4a^2b}{4a}=ab\)

Mà \(\dfrac{a}{4b^2+1}+\dfrac{b}{4a^2+1}=\dfrac{a\left(4b^2+1\right)}{4b^2+1}-\dfrac{4ab^2}{4b^2+1}+\dfrac{b\left(4a^2+1\right)}{4a^2+1}-\dfrac{4ab^2}{4a^2+1}\ge a-ab+b-ab=4ab-2ab=2ab\)

Mà \(a+b=4ab\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=4\ge\dfrac{2}{2\sqrt{ab}}\Rightarrow4\sqrt{ab}\ge2\Rightarrow ab\ge\dfrac{1}{4}\)

\(\Rightarrow2ab\ge\dfrac{1}{2}\Rightarrow\dfrac{a}{4b^2+1}+\dfrac{b}{4a^2+1}\ge\dfrac{1}{2}\)

Dấu "=" \(\Leftrightarrow a=b=\dfrac{1}{2}\)

 

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

Lời giải:

ĐK $\Rightarrow \frac{1}{a}+\frac{1}{b}=4$

Đặt $\frac{1}{x}=a; \frac{1}{y}=b$ thì bài toán trở thành:

Cho $a,b>0$ thỏa mãn $a+b=4$. CMR:

$P=\frac{x^2}{y(x^2+4)}+\frac{y^2}{x(y^2+4)}\geq \frac{1}{2}$

-----------------------

Áp dụng BĐT AM-GM:

$\frac{x^2}{y(x^2+4)}+\frac{y(x^2+4)}{64}\geq \frac{x}{4}$

$\frac{y^2}{x(y^2+4)}+\frac{x(y^2+4)}{64}\geq \frac{y}{4}$

Cộng theo vế và rút gọn:

$P\geq \frac{3(x+y)-xy}{16}=\frac{12-xy}{16}$

Mà $xy\leq \frac{(x+y)^2}{4}=4$

$\Rightarrow P\geq \frac{12-4}{16}=\frac{1}{2}$

Ta có đpcm.