Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: Vì a+3 và b+4 chia hết cho 5=>a+3+b+4 chia hết cho 5=> a+b+7 chia hết cho 5
=>a+b có tận cùng là 8 hoặc 3
Vì a+3chia hết cho 5
Nếu a+3 có tận cùng là 0=>a có tận cùng là 2
Nếu a+3 có tận cùng là 5=>a có tận cùng là 7
Vì chia hết cho 5
Nếu b+4 có tận cùng là 0=>b có tận cùng là 6
Nếu b+4 có tận cùng là 5=>b có tận cùng là 1
Ta có: a²+b²=(...2)²+(...1)²=...5 chia hết cho 5(1)(chọn a có tận cùng là 2 và b có tận cùng là 1 vì a+b có tận cùng bằng 3)
mặt khác: a²+b²=(...7)²+(...6)²=...5 chia hết cho 5(2)(chọn a có tận cùng là 7 và b có tận cùng là 6 vì a+b có tận cùng bằng 3)
Từ (1) và (2) =>a^2 + b^2chia hết cho 5(ĐPCM)
Vì a chia 5 dư 1 nên đặt a = 5x + 1 (x Î N); b chia 5 dư 4 nên đặt b = 5y + 4(y Î N).
Ta có a.b + 1 = (5x + 1)(5y + 4) + 1 = 25xy + 20x + 5y + 5.
Þ ab + 1 = 5(5xy + 4x + y + 1) ⋮ 5 (đpcm).
a chia 5 dư 1 nên \(a=5m+1\left(m\inℕ\right)\)
b chia 5 dư 4 nên \(b=5n+4\left(n\inℕ\right)\)
Do đó \(ab=\left(5m+1\right)\left(5n+4\right)+1\)
\(ab=25mn+20m+5n+4+1\)
\(ab=25mn+20m+5n+5⋮5\)
Ta có đpcm
Đặt A=5k+1, B=5k+4 \(\left(k\in N\right)\)
\(\Rightarrow ab+1=\left(5k+1\right)\left(5k+4\right)+1=25k^2+25k+5=5\left(5k^2+5k+1\right)⋮5\left(đpcm\right)\)
\(ab+1=\left(5k+1\right)\left(5k+4\right)+1\)
\(=25k^2+20k+5k+4+1\)
\(=25k^2+25k+5⋮5\)
cho a và b là các số tự nhiên thỏa mãn a^2+b^2 chia hết 7. chứng minh rằng a và b đều chia hết cho 7
Nhận thấy một số chính phương khi chia cho 7 có các số dư: 0,1,2,4. Xét các trường hợp:
+) Nếu một trong 2 số chia hết cho 7 thì hiển nhiên số còn lại cũng chia hết cho 7.
+) Nếu cả 2 số đều không chia hết cho 7, ta thấy trong 3 số 1,2,4 không có 2 số nào có tổng chia hết cho 7 => \(a^2+b^2\) không chia hết cho 7.
Vậy ta có đpcm.
a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)
Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)
\(=3\left(mn+2m+n\right)+2\)
Vậy ab chia 3 dư 2 .
b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)
Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)
Vậy \(a^2\) chia 5 dư 1 .
Đặt \(a=5k+1\)
\(b=5k+1+3\)
\(ab+1=\left(5k+1\right)\left(5k+4\right)+1=25k^2+25k+4+1\)
\(\Leftrightarrow25k^2+25k+5=5\left(5k^2+5+1\right)⋮5\)