Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
diiiiiiiiiiiiiiiiiiiioaaaaaaaaaâkjfàokàokáafdá
gdfh
dgh
d
hgsdf
sdf
gsdg
sdg
s
dg
dsg
gs
s
dg
s
dsdgsđsgsd
Cosi: ab <= 1/4
Quy đồng P, ta đc:
P = (2ab+1)/(ab+2).
Ta cm P <= 2/3
<=> 3(2ab+1) <= 2(ab+2)
<=> ab<= 1/4 (đúng)
Vậy maxP = 2/3 khi a=b =1/2
\(\dfrac{2a^2-b^2}{a^2+b^2}=-\dfrac{1}{13}\)
\(\Leftrightarrow\dfrac{\left(2a^2+2b^2\right)-3b^2}{a^2+b^2}=-\dfrac{1}{13}\)
\(\Leftrightarrow2-\dfrac{3b^2}{a^2+b^2}=-\dfrac{1}{13}\)
\(\Leftrightarrow\dfrac{b^2}{a^2+b^2}=\dfrac{9}{13}\)
\(\Rightarrow1-\dfrac{b^2}{a^2+b^2}=1-\dfrac{9}{13}=\dfrac{4}{13}\)
\(\Leftrightarrow\dfrac{a^2}{a^2+b^2}=\dfrac{4}{13}\)
\(\dfrac{a^2}{b^2}=\dfrac{4}{9}\Rightarrow\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{2}{3}\\\dfrac{a}{b}=-\dfrac{2}{3}\end{matrix}\right.\)