Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a2000+b2000=a2001+b2001=a2002+b2002 <=> a=b=1
Vay a2011+b2011=2
(a2001 + b2001).(a+ b) - (a2000 + b2000).ab = a2002 + b2002
(a+ b) – ab = 1
(a – 1).(b – 1) = 0
a = 1 hoặc b = 1
Với a = 1 => b2000 = b2001 => b = 1 hoặc b = 0 (loại)
Với b = 1 => a2000 = a2001 => a = 1 hoặc a = 0 (loại)
Vậy a = 1; b = 1 => a2011 + b2011 = 2
(a2001 + b2001).(a+ b) - (a2000 + b2000).ab = a2002 + b2002
(a+ b) – ab = 1
(a – 1).(b – 1) = 0
a = 1 hoặc b = 1
Với a = 1 => b2000 = b2001 => b = 1 hoặc b = 0 (loại)
Với b = 1 => a2000 = a2001 => a = 1 hoặc a = 0 (loại)
Vậy a = 1; b = 1 => a2011 + b2011 = 2
a2000 + b2000 = a2001 + b2001
=>a2000(a-1)+b2000(b-1)=0 (1)
tương tự: a2001(a-1)+b2001(b-1)=0 (2)
trừ (2) cho (1) ta được kết quả sau khi nhóm lại là:
a2000(a-1)2+b2000(b-1)2=0
mỗi số hạng ≥0 =>mỗi cái=0
tìm được a=0 or a=1 và b=0 or b=1
vì a,b dương nên nghiệm của pt là: (a;b)∈{(1;1)}
=>a2011 + b2011=2
Vậy ...
đơn giản bạn ơi,
cặp a,b có hai trường hơp :
a 0 0 1 1
b 0 1 0 1
a^2011 + b ^2011 0 1 1 2
xét hiệu:
\(\left(a^{2000}+b^{2000}\right)\left(a^{2002}+b^{2002}\right)-\left(a^{2001}+a^{2001}\right)^2=0\)
(a^2001 + b^2001).(a+ b) - (a2000 + b2000).ab = a^2002 + b^2002
(a+ b) – ab = 1
(a – 1).(b – 1) = 0
a = 1 hoặc b = 1
Với a = 1 suy ra; b^2000 = b^2001 suy ra; b = 1 hoặc b = 0 (loại)
Với b = 1suy ra; a2000 = a2001 suy ra; a = 1 hoặc a = 0 (loại)
Vậy a = 1; b = 1 suy ra a2011 + b2011 = 2
cho a,b dương và \(a^{2000}+b^{2000}=a^{2001}+b^{2001}=a^{2002}+b^{2002}\)tính \(a^{2011}+b^{2011}\)
\(a^{2000}+b^{2000}=a^{2001}+b^{2001}\)
\(\Leftrightarrow a^{2000}\left(a-1\right)+b^{2000}\left(b-1\right)=0\left(1\right)\)
\(a^{2001}+b^{2001}=b^{2002}+a^{2002}\)
\(\Leftrightarrow a^{2001}\left(a-1\right)+b^{2001}\left(b-1\right)=0\left(2\right)\)
Trừ vế theo vế ta được:
\(\left(a-1\right)\left(a^{2001}-a^{2000}\right)+\left(b-1\right)\left(b^{2001}-b^{2000}\right)=0\)
\(\Leftrightarrow\left(a-1\right)a^{2000}\left(a-1\right)+\left(b-1\right)b^{2000}\left(b-1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2a^{2000}+\left(b-1\right)^2b^{2000}=0\)
Mà a,b dương\(\Rightarrow a=b=1\)
\(\Rightarrow a^{2011}+b^{2011}=2\)
cho a,b dương và \(a^{2000}+b^{2000}=a^{2001}+b^{2001}=a^{2002}+b^{2002}\)
tính\(a^{2011}+b^{2011}\)
Ta có: \(a^{2002}+b^{2002}=\left(a^{2001}+b^{2001}\right)\left(a+b\right)-a.b\left(a^{2000}+b^{2000}\right)\) (1)
Vì \(a^{2002}+b^{2002}=a^{2001}+b^{2001}=a^{2000}+b^{2000}\)
\(\Rightarrow\left(1\right)\Leftrightarrow a+b-ab=1\)
\(\Leftrightarrow a+b-ab-1=0\)
\(\Leftrightarrow a\left(1-b\right)-\left(1-b\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
Cả hai TH ta đều có a=b=1
\(\Rightarrow a^{2011}+b^{2011}=1+1=2\)
P/s: Nếu thấy khó hiểu cách này thì bạn có thể tham khảo:
Câu hỏi của Mai Diễm My - Toán lớp 8 | Học trực tuyến
Tớ vừa làm => tham khảo link này:
Câu hỏi của vinh siêu nhân - Toán lớp 8 | Học trực tuyến
số ab này bằng 1 hoặc bằng 0 nên a^2011+b^2011 bằng 0 hoặc 1 và tất nhên nó băng mấy cái trên
a;b \(\in\){0;1}
TH1: a;b =0
a2011+b2011=0^2011+0^2011=0
TH2: a;b=1
a^2011 + b^2011 = 1 + 1 = 2