K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

a < b

=> 2a < 2b (Nhân 2 vào 2 vế của BPT)

=> -2a > -2b (Nhân -1 vào 2 vế của BPT)

=> -2a + (-5) > -2b + (-5) (Cộng -5 vào 2 vế của BPT)

=> -2a - 5 > -2b - 5 (Đpcm).

6 tháng 7 2016

cảm ơn rất nhiều ạ

30 tháng 3 2018

à mk nhầm 

mk tưởng là hình bình hành

sr bạn =((

30 tháng 3 2018

em cảm ơn trước ạ

NV
22 tháng 3 2023

a.

Do ABCD là hình chữ nhật \(\Rightarrow\widehat{HBA}=\widehat{CDB}\) (so le trong)

Xét hai tam giác HBA và CDB có:

\(\left\{{}\begin{matrix}\widehat{HBA}=\widehat{CDB}\left(cmt\right)\\\widehat{AHB}=\widehat{BCD}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta HBA\sim\Delta CDB\left(g.g\right)\)

b.

Xét hai tam giác AHD và BAD có:

\(\left\{{}\begin{matrix}\widehat{ADB}\text{ chung}\\\widehat{AHD}=\widehat{BAD}=90^0\end{matrix}\right.\) \(\Rightarrow\Delta AHD\sim\Delta BAD\left(g.g\right)\)

\(\Rightarrow\dfrac{AD}{DB}=\dfrac{DH}{AD}\Rightarrow AD^2=DH.DB\)

c.

Áp dụng định lý Pitago cho tam giác vuông BAD:

\(DB=\sqrt{AD^2+AB^2}=\sqrt{BC^2+AB^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)

Theo chứng minh câu b:

\(AD^2=DH.DB\Rightarrow DH=\dfrac{AD^2}{DB}=\dfrac{BC^2}{DB}=\dfrac{6^2}{10}=3,6\left(cm\right)\)

Áp dụng Pitago cho tam giác vuông AHD:

\(AH=\sqrt{AD^2-HD^2}=\sqrt{6^2-3,6^2}=4,8\left(cm\right)\)

NV
22 tháng 3 2023

loading...

16 tháng 6 2018

a) Đặt  \(A=4x-x^2-5\)

\(-A=x^2-4x+5\)

\(-A=\left(x^2-4x+4\right)+1\)

\(-A=\left(x-2\right)^2+1\)

Mà  \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge1\)

\(\Leftrightarrow A\le-1< 0\left(đpcm\right)\)

b) Đặt  \(B=x^2-2x+5\)

\(B=\left(x^2-2x+1\right)+4\)

\(B=\left(x-1\right)^2+4\)

Mà  \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow B\ge4>0\left(đpcm\right)\)

16 tháng 6 2018

a)4x-x2-5 = -(x2-4x+4)-1= -(x-2)^2 -1 < 0 với mọi x (đpcm)

b) x-2x+5= (x2-2x+1)+4=(x-1)^2 +4 >0  với mọi x (đpcm)

27 tháng 7 2018

2a^2 +2b^2 -5ab = 0

2a^2 -4ab -ab +2b^2 = 0

2a(a-2b) -b(a-2b) = 0

(2a-b)(a-2b) = 0

Suy ra: 2a=b hoặc a=2b

Mà a>b>0 nên a=2b

Ta có: P = a+b/a-b = 2b+b/ 2b-b = 3b/b=3

Vậy P = 3

Chúc bạn học tốt.

27 tháng 7 2018

Ta có: \(2a^2+2b^2=5ab\)

\(\Leftrightarrow2a^2+2b^2-5ab=0\)

\(\Leftrightarrow2a^2-4ab-ab+2b^2=0\)

\(\Leftrightarrow2a\left(a-2b\right)-b\left(a-2b\right)=0\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a-2b=0\\2a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=2b\\2a=b\end{cases}}}\)

Mà a > b > 0 nên a = 2b

Thế vào, ta được: \(P=\frac{a+b}{a-b}=\frac{2b+b}{2b-b}=\frac{3b}{b}=3\)

Vậy P = 3

ko pc lun nek ...........ukm ko pc

11 tháng 9 2018

A B C D K 1 2 3 1 2 1 2

Vif CD = AD + BC maf KD = AD => KC = BC

Tam giacs DAK cân tại D => góc A1 = góc K1

Mà K1 = A2 (so le trong) => Góc A1 = góc A2 => AK là tia phân giác góc A.

Chứng minh tương tự, BK là phân giác góc B

NV
7 tháng 2 2022

\(VT=\dfrac{a^2}{b+ab^2c}+\dfrac{b^2}{b+abc^2}+\dfrac{c^2}{c+a^2bc}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+abc\left(a+b+c\right)}=\dfrac{9}{3+3abc}\)

\(VT\ge\dfrac{9}{3+\dfrac{\left(a+b+c\right)^3}{9}}=\dfrac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

8 tháng 2 2022

cảm ơn thầy ạ

Ta có: \(\frac{a^2}{b}+\frac{b^2}{a}+7\left(a+b\right)\ge8\sqrt{2\left(a^2+b^2\right)}\)

\(\Leftrightarrow a^3+b^3+7ab\left(a+b\right)\ge8ab\sqrt{2\left(a^2+b^2\right)}\)

Ta có: \(VP=8\sqrt{ab}\sqrt{\left(a^2+b^2\right)\cdot2ab}\le^{am-gm}4\sqrt{ab}\left(a+b\right)^2\)

\(VT=\left(a+b\right)\left[\left(a+b\right)^2+4ab\right]\ge^{am-gm}\left(a+b\right)4\sqrt{ab}\left(a+b\right)\ge VP\)

=> ĐPCM

25 tháng 8 2020

Dạ em cảm ơn ạ!