K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2018

a) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a+4b}{3c+4d}=\frac{3a-4b}{3c-4d}.\)

\(\Rightarrow\frac{3a+4b}{3a-4b}=\frac{3c+4d}{3c-4d}\)

b) ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{5a}{5b}=\frac{2c}{2d}=\frac{4a}{4b}\)

Lại có: \(\frac{5a}{5b}=\frac{2c}{2d}=\frac{5a+2c}{5b+2d}\)

\(\Rightarrow\frac{4a}{4b}=\frac{5a+2c}{5b+2d}\Rightarrow\frac{5a+2c}{4a}=\frac{5b+2d}{4b}\)

5 tháng 9 2018

c) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

Lại có: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)

\(\Rightarrow\frac{\left(a+b^2\right)}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)

26 tháng 8 2019

help

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{7a-4b}{3a+5b}=\dfrac{7bk-4b}{3bk+5b}=\dfrac{7k-4}{3k+5}\)

\(\dfrac{7c-4d}{3c+5d}=\dfrac{7dk-4d}{3dk+5d}=\dfrac{7k-4}{3k+5}\)

Do đó: \(\dfrac{7a-4b}{3a+5b}=\dfrac{7c-4d}{3c+5d}\)

b: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)

Do đó: \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

23 tháng 12 2018

vì a/b=c/d =>a/c=b/d

áp dụng tính chất của dãy tỉ số bằng nhau ta có :

a/c=b/d=a+b/c+d=a-b/c-d

vi a+b/c+d=a-b/c-d

=>a-b/a+b=c-d/c+d(dpcm)

- vì a/b=c/d=>a/c=b/d=>7a/7c=4b/4d

vì a/c=c/d=>3a/3c=5b/5d

áp dụng tính chất của dãy tỉ số bằng nhau ta có

a/c=b/d=7a-4b/7c-4d=3a+5b/3c+5d

vì 7a-4b/7c-4d=3a+5b/3c+5d

=>7a-4b/3a+5b=7c-4d/3c+5d(dpcm)

- vì a/b=c/d=>a/c=b/d=>a2/c2=b2/d2=ab/cd(1)

áp dụng tính chất của dãy tỉ số bằng nhau ta có 

a2/c2=b2/d2=a2+b2/c2+d(2)

a/c=b/d=c-a/d-b=>a2/c2=b2/d2=(c-a)2/(d-b)(3)

​từ(1),(2) và (3)=>ac/bd=a2+c2/b2+d2=(c-a)2/(d-b)2

Bài 2: 

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b+c}{2+4+3}=\dfrac{180}{9}=20\)

=>a=20; b=80; c=60

 

Bài 3:

a: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\left(\dfrac{b}{d}\right)^2\)

Do đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2-b^2}{c^2-d^2}\)

c: \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)

\(\left(\dfrac{a-b}{c-d}\right)^2=\left(\dfrac{bk-b}{dk-d}\right)^2=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{ab}{cd}=\left(\dfrac{a-b}{c-d}\right)^2\)

25 tháng 6 2017

a, Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có: \(\frac{3a+5b}{2a-7b}=\frac{3bk+5b}{2bk-7b}=\frac{b\left(3k+5\right)}{b\left(2k-7\right)}=\frac{3k+5}{2k-7}\) (1)

\(\frac{3c+5d}{2c-7d}=\frac{3dk+5d}{2dk-7d}=\frac{d\left(3k+5\right)}{d\left(2k-7\right)}=\frac{3k+5}{2k-7}\) (2)

Từ (1) và (2) suy ra đpcm

b,Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a+b}{c+d}\cdot\frac{a+b}{c+d}\Rightarrow\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\) (3)

Lại có \(\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\) (4)

Từ (3) và (4) suy ra đpcm

25 tháng 6 2017

Cảm ơn bn nhiều.

24 tháng 6 2015

đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

a)

\(\frac{5a+2c}{5b+2d}=\frac{5bk+2dk}{5b+2d}=\frac{k\left(5b+2d\right)}{5b+2d}=k\)

\(\frac{a-4c}{b-4d}=\frac{bk-4dk}{b-4d}=\frac{k\left(b-4d\right)}{b-4d}=k\)

=>\(\frac{5a+2c}{5b+2d}=\frac{a-4c}{b-4d}=k\)(đpcm)

b)

\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}=\frac{b}{d}\)

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a+b}{c+d}=\frac{bk+b}{dk+d}=\frac{b\left(k+1\right)}{d\left(k+1\right)}=\frac{b}{d}\)

=>\(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

14 tháng 8 2017

a,Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\left\{{}\begin{matrix}\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3a+2c}{3b+2d}\\\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a-5c}{b-5d}\end{matrix}\right.\Rightarrow\dfrac{3a+2c}{3b+2d}=\dfrac{a-5c}{b-5d}\)

Vậy.........(đpcm)

b, Ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\\\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}\end{matrix}\right.\)

Vậy..............(đpcm)

Chúc bạn học tốt!!!

14 tháng 8 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{3a}{3b}=\dfrac{2c}{2d}=\dfrac{3a-2c}{3b-2d}\)

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}=\dfrac{5c}{5d}=\dfrac{a-5c}{b-5d}\)

\(\Rightarrow\dfrac{3a-2b}{3b-2c}=\dfrac{a-5c}{b-5d}\)

\(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{\left[b\left(k-1\right)\right]^2}{\left[d\left(k-1\right)\right]^2}=\dfrac{b^2}{d^2}\)

\(\Rightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{a^2+b^2}{c^2+d^2}\)