K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2018

Bài này sử dụng Cô-si ngược dấu:

\(\frac{a^3}{a^2+ab+b^2}=\frac{a.\left(a^2+ab+b^2\right)-ab\left(a+b\right)}{a^2+ab+b^2}=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\)

có: \(\frac{ab\left(a+b\right)}{a^2+ab+b^2}\le\frac{ab\left(a+b\right)}{2ab+ab}=\frac{a+b}{3}\)

=> \(-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge-\frac{ab\left(a+b\right)}{2ab+ab}=-\frac{a+b}{3}\)

=> \(\frac{a^3}{a^2+ab+b^2}\ge a-\frac{a+b}{3}\)

Chứng minh tương tự:

=> \(A\ge a+b+c-\frac{2\left(a+b+c\right)}{3}=\frac{a+b+c}{3}\)

20 tháng 8 2018

Cho a,b, c là các số thực dương. CMR:

a3a2+ab+b2 +b3b2+bc+c2 +c3c2+ac+a2 a+b+c3 

1 tháng 6 2019

Áp dụng bđt AM-GM :

\(\frac{1}{a^2+1}+\frac{a^2+1}{4}\ge2\sqrt{\frac{a^2+1}{\left(a^2+1\right)\cdot4}}=1\)

Tương tự ta có : 

\(\frac{1}{b^2+1}+\frac{b^2+1}{4}\ge1\)

\(\frac{1}{c^2+1}+\frac{c^2+1}{4}\ge1\)

Cộng từng vế ta có :

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{a^2+b^2+c^2+3}{4}\ge3\)

Áp dụng bđt quen thuộc : \(a^2+b^2+c^2\ge ab+bc+ac=3\)

Khi đó : \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge3-\frac{3+3}{4}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

1 tháng 6 2019

bạn làm sai rồi . Khi \(a^2+b^2+c^2\ge3\) bạn chuyển vế thì nó không cùng dấu với bất đẳng thức

22 tháng 9 2020

Đặt đẳng thức là A. Áp dụng bất đẳng thức AM-GM ta có:

\(\sqrt{2b\left(a-b\right)}\le\frac{2b+\left(a+b\right)}{2}=\frac{a+3b}{2}\)

Từ đó: \(A\ge\frac{2a\sqrt{2}}{a+3b}+\frac{2b\sqrt{2}}{b+3c}+\frac{2c\sqrt{2}}{c+3a}\)

Ta sẽ chứng minh: \(M=\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)

Thật vậy, ta có: \(M=\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ca}\)

Theo BĐT AM-GM ta có:

\(ab+bc+ca\le a^2+b^2+c^2\)

Áp dụng BĐT cauchy ta được:

\(M\ge\frac{\left(a+b+c\right)^2}{\frac{4}{3}\left(a^2+b^2+c^2\right)+\frac{8}{3}\left(ab+bc+ca\right)}\)\(=\frac{\left(a+b+c\right)^2}{\frac{4}{3}\left(a+b+c\right)^2}=\frac{3}{4}\)

Vì vậy: \(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)

Từ đó ta có: \(A\ge\frac{2a\sqrt{2}}{a+3b}+\frac{2b\sqrt{2}}{b+3c}+\frac{2c\sqrt{2}}{c+3a}\ge2\sqrt{2}.\frac{3}{4}=\frac{3\sqrt{2}}{2}\)

Vậy đẳng thức xảy xa khi và chỉ khi a=b=c

6 tháng 4 2021

Ta có : \(\hept{\begin{cases}\frac{a^3}{a^2+b^2+ab}=\frac{a^4}{a\left(a^2+b^2+ab\right)}=\frac{a^4}{a^3+ab^2+a^2b}=\frac{a^4}{a^3+ab\left(a+b\right)}\\\frac{b^3}{b^2+c^2+bc}=\frac{b^4}{b\left(b^2+c^2+bc\right)}=\frac{b^4}{b^3+bc^2+b^2c}=\frac{b^4}{b^3+bc\left(b+c\right)}\\\frac{c^3}{c^2+a^2+ca}=\frac{c^4}{c\left(c^2+a^2+ca\right)}=\frac{c^4}{c^3+ca^2+c^2a}=\frac{c^4}{c^3+ca\left(c+a\right)}\end{cases}}\)

Khi đó bất đẳng thức được viết lại thành :

\(\frac{a^4}{a^3+ab\left(a+b\right)}+\frac{b^4}{b^3+bc\left(b+c\right)}+\frac{c^4}{c^3+ca\left(c+a\right)}\ge\frac{a+b+c}{3}\)

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)

Dễ dàng phân tích \(a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

=> \(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\frac{a^2+b^2+c^2}{a+b+c}\)

Xét bất đẳng thức phụ : 3( a2 + b2 + c2 ) ≥ ( a + b + c )2

<=> 3a2 + 3b2 + 3c2 - a2 - b2 - c2 - 2ab - 2bc - 2ca ≥ 0

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca ≥ 0

<=> ( a - b )2 + ( b - c )2 + ( c - a )2 ≥ 0 ( đúng )

Khi đó áp dụng vào bài toán ta có : \(VT\ge\frac{a^2+b^2+c^2}{a+b+c}=\frac{\frac{\left(a+b+c\right)^2}{3}}{a+b+c}=\frac{a+b+c}{3}\)( đpcm )

Đẳng thức xảy ra <=> a=b=c

6 tháng 4 2021

bài này mới được thầy sửa hồi chiều nè @@

Vì a,b dương => ( a + b ) ( a - b )2 \(\ge\)0 => a3 + b3 \(\ge\)ab ( a + b )

BĐT tương đương với 3a3\(\ge\)2a3 + 2ab ( a + b ) - b3 = 2a3 + 2a2b + 2ab2 - a2b - ab2 - b3 = ( a2 + ab + b3 ) ( 2a - b )

Suy ra : \(\frac{a^3}{a^2+ab+b^2}\ge\frac{2a-b}{3}\)(1)

Chứng minh tương tự ta được : \(\frac{b^3}{b^2+bc+c^2}\ge\frac{2b-c}{3}\)(2) ; \(\frac{c^3}{c^2+ca+a^2}\ge\frac{2c-a}{3}\)(3)

Từ (1) ; (2) và (3) => \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)(đpcm)

16 tháng 10 2019

\(\frac{a}{b^2+bc+c^2}+\frac{b}{c^2+ca+a^2}+\frac{c}{a^2+ab+b^2}=\frac{a^2}{ab^2+abc+ac^2}+\frac{b^2}{bc^2+abc+ba^2}+\frac{c^2}{ca^2+abc+cb^2}\)     (1)

Áp dụng BDT Cauchy-Schwarz: \(\left(1\right)\ge\frac{\left(a+b+c\right)^2}{ab^2+ac^2+ba^2+bc^2+ca^2+cb^2+3abc}\)

Lại có: \(ab^2+ac^2+ba^2+bc^2+ca^2+cb^2+3abc=\left(ab+bc+ac\right)\left(a+b+c\right)\)

Thay vào -> dpcm

17 tháng 10 2019

\(VT=\frac{a^2}{ab^2+abc+ac^2}+\frac{b^2}{c^2b+abc+a^2b}+\frac{c^2}{a^2c+abc+b^2c}\)

Áp dụng BĐT Cauchy dạng phân thức 

\(\Rightarrow VT\ge\frac{\left(a+b+c\right)^2}{ab\left(a+b\right)+abc+ac\left(a+c\right)+abc+bc\left(b+c\right)+abc}\)

\(\Leftrightarrow VT\ge\frac{\left(a+b+c\right)^2}{ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)}\)

\(=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}\)

\(\Leftrightarrow VT\ge\frac{a+b+c}{ab+bc+ac}\left(đpcm\right)\)

Dấu "=" xảy ra khi a=b=c

Chúc bạn học tốt !!!

30 tháng 9 2016

Bài 1. Từ giả thiết suy ra 1-a = b+c và áp dụng \(\left(x+y\right)^2\ge4xy\) 

Ta có : \(4\left(1-a\right)\left(1-b\right)\left(1-c\right)=4\left(b+c\right)\left(1-c\right)\left(1-b\right)\le\left[\left(b+c\right)+\left(1-c\right)\right]^2\left(1-b\right)\)

\(=\left(b+1\right)^2\left(1-b\right)=\left(b+1\right)\left(1-b^2\right)=-b^2\left(b+1\right)+\left(b+1\right)\le b+1=a+2b+c\)

22 tháng 11 2019

Áp dụng BĐT AM - GM : \(ab< \frac{a^2+b^2}{2}\Rightarrow a^2+ab+b^2\le\frac{3}{2}\left(a^2+b^2\right)\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}\ge\frac{2}{3}.\frac{a^3}{a^2+b^2}=\frac{2}{3}\left(a-\frac{ab^2}{a^2+b^2}\right)\)

Mà cũng theo BĐT AM - GM : \(\frac{ab^2}{a^2+b^2}\le\frac{ab^2}{2ab}=\frac{b}{2}\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}\ge\frac{2}{3}\left(a-\frac{ab^2}{a^2+b^2}\right)\ge\frac{2}{3}\left(a-\frac{b}{2}\right)\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế :

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}\ge\frac{2}{3}\left(a-\frac{b}{2}\right)+\frac{2}{3}\left(b-\frac{c}{2}\right)\) \(+\frac{2}{3}\left(c-\frac{a}{2}\right)\)

Ta có đpcm 

Dấu " = " xảy ra khi \(a=b=c\)

Chúc bạn học tốt !!!

22 tháng 11 2019

Tham khảo tại đây:

Câu hỏi của Đỗ Tiến Dũng - Toán lớp 9 - Học toán với OnlineMath

23 tháng 11 2017

chứng minh \(\sqrt{2x+1}\)là số vô tỉ