Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=182\left(ab\right)^2-81a^3b-81ab^3-10a^4-10b^4\)
Ta có : \(\overline{ab}-\overline{ba}=\left(10a+b\right)-\left(10b-a\right)=9\left(a-b\right)\)
Theo giả thiết thì \(\left(\overline{ab}-\overline{ba}\right)⋮11\) , tức là \(9\left(a-b\right)⋮11\)
Mà (9;11) = 1 nên \(\left(a-b\right)⋮11\)(1)
Mặt khác , \(1\le a\le9\); \(0\le b\le9\)
Do vậy \(-8\le a-b\le9\)(2)
Từ (1) và (2) ta có \(a-b=0\Leftrightarrow a=b\)
Với a = b thay vào A được : \(182a^4-81a^4-81a^4-10a^4-10a^4=0\) luôn chia hết cho 14641
Vậy có đpcm.
Ta có
\(\overline{ab}-\overline{ba}=10a+b-10b-a=9\left(a-b\right)\)
Chia hết cho 11 => (a - b) chia hết cho 11 (1)
Gọi UC(ab; ba) là d ta có
ab - ba = 11 chia hết cho d
Mà ab và ba là số có 2 chữ số và 11 là số nguyê tố nên d = 11
Từ đó ta có
ab = 10a + b chia hết cho 11 (2)
ba = 10b + a chia hết cho 11 (3)
Ta có: 182(ab)2-81a3b-81ab3-10a4-10b4
= - (10a + b)(10b + a)(a - b)2 (4) ( cái này mình ghi nhâ tử luôn cho gọn nha)
Từ (1), (2), (3), (4) ta có 182(ab)2-81a3b-81ab3-10a4-10b4 chia hết cho 114 = 14641
ab+cd+eg chia hết cho 11
Mà 9999ab = 99.11.ab chia hết cho 11 và 99cd = 9.11.cd chia hết cho 11
=> 9999ab+99cd+ab+cd+eg chia hết cho 11
=> 10000ab+100cd+eg chia hết cho 11
=> ab0000+cd00+eg chia hết cho 11
=> abcdeg chia hết cho 11
=> ĐPCM
Tk mk nha
Ta có: \(\overline{abcdeg}=10000\overline{ab}+100\overline{cd}+\overline{eg}=9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
Mà \(999\overline{ab}⋮11;99\overline{cd}⋮11;\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)
\(\Rightarrow9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)
Vậy...
a, ab+ba = 10a+b+10b+a = 11a+11b = 11.(a+b) chia hết cho 11
b, ab-bc = 10a+b-(10b+a) = 9a-9b = 9.(a-b) chia hết cho 9
k mk nha
a) ab + ba = ( 10a + b ) + ( 10b + a ) = 11 + 11b = 11 . ( a + b ) \(⋮\)11
vậy ab + ba \(⋮\)11
b) ab - ba = ( 10a + b ) - ( 10b + a ) = 9a - 9b = 9 . ( a - b ) \(⋮\)9
Vậy ab - ba \(⋮\)9
anh đã trở lại và lợi hại hơn xưa
lâu rồi mới online
Chứng minh à kaitovskudo