Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NX: \(455^{12}\equiv1\left(mod4\right)\)
\(\Rightarrow ab\equiv1\left(mod4\right)\)nên đặt \(a=4k+m,b=4h+n\left(k,h\in N:m,n\in[0,1,2,3]\right)\)
\(\Rightarrow mn\equiv1\left(mod4\right)\)
\(\Rightarrow\orbr{\begin{cases}m=n=1\\m=n=3\end{cases}}\)\(\Rightarrow m+n\equiv2\left(mod4\right)\)
Vậy ab chia 4 dư 2
a.Ta có a /4 dư 2 là 6
b/4 dư 1 là 5
Vậy a*b=6*5=30 chia 4 dư 2
b.Giã sử đặt a là 1 ta co a^2 =1, 1/4=0 dư 1 thế các số lẻ khác thì kết quả luôn luôn dư 1
c.cá số chẳn khi bình phương đều chia hết chõ vì thế các số lẻ bình phương mới không chia hết cho 4 vì thế các số dư luôn luôn 1
a) Vì a chia 4 dư 2 nên a = 4k + 2
b chia 4 dư 1 nên b = 4t + 1
a.b = ( 4k + 2 )( 4t + 1 ) = 16kt + 4k + 8t + 2 chia 4 dư 2
Vậy ab chia 4 dư 2
b) Vì a là số lẻ nên a = 2k + 1
a² = ( 2k + 1)( 2k + 1 ) = 4k² + 4k + 1 chia 4 dư 1
Vậy a² chia 4 dư 1
c) Vì a² là số chính phương ( a là số tự nhiên )
suy ra a² chia 4 dư 0 hoặc 1
Bài 1:
\(=\dfrac{x^3-x^2+x+3}{x+1}\)
\(=\dfrac{x^3+x^2-2x^2-2x+3x+3}{x+1}\)
\(=x^2-2x+3\)
gọi thương của hai phép chia lần lượt là P và Q ,ta có
a=5P+1
b=5Q+4
=> (ab)+1<=>(5P+1)(5Q+4)+1
\(\Leftrightarrow25PQ+20P+5Q+5\)
\(\Leftrightarrow5\left(5PQ+4P+Q+1\right)⋮5\)
=>ab+1 chia hết cho 5
Ta có a chia 5 dư 1 ,
b chia 5 dư 4,
=> ab chia 5 dư 4
=> ab+1 chia hết cho 5