K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

Gọi (a^2;a+b)=d

=> a^2 chia hết cho d

a+b chia hết cho d => a(a+b) chia hết cho d => a^2+ab chia hết cho d

=> ab chia hết cho d

mà (a,b)=1 và a^2 chia hết cho 7

=> a chia hết cho d 

mà a+b chia hết cho d

=> b chia hết cho d

vậy d là ước chung của a và b

mà (a,b)=1 

=> d=1

=> đpcm

27 tháng 11 2016

tại cậu hay chê người khác kém bây giờ có bài cần hỏi người ta cũng không thèm giúp cậu

20 tháng 8 2023

Để chứng minh rằng biểu thức abc(1+a^2)(1+b^2)(1+c^2) nhỏ hơn hoặc bằng 8 khi a, b, c là các số dương và a + b + c = 3, chúng ta có thể sử dụng bất đẳng thức AM-GM (bất đẳng thức trung bình cộng - trung bình nhân).

Áp dụng bất đẳng thức AM-GM cho a, b, c ta có: (a + b + c)/3 >= (abc)^(1/3)

Vì a + b + c = 3, ta có: 3/3 >= (abc)^(1/3) 1 >= (abc)^(1/3) 1^3 >= abc 1 >= abc

Tiếp theo, chúng ta cần chứng minh rằng (1 + a^2)(1 + b^2)(1 + c^2) <= 8.

Áp dụng bất đẳng thức AM-GM cho (1 + a^2), (1 + b^2), (1 + c^2) ta có: (1 + a^2 + 1 + b^2 + 1 + c^2)/3 >= ((1 + a^2)(1 + b^2)(1 + c^2))^(1/3)

Vì a^2 + b^2 + c^2 >= 3 (bằng với bất đẳng thức Tchebyshev), ta có: (3 + a^2 + b^2 + c^2)/3 >= ((1 + a^2)(1 + b^2)(1 + c^2))^(1/3) (3 + a^2 + b^2 + c^2)/3 >= (3 + a^2 + b^2 + c^2)/3 1 >= ((1 + a^2)(1 + b^2)(1 + c^2))^(1/3) 1^3 >= (1 + a^2)(1 + b^2)(1 + c^2) 1 >= (1 + a^2)(1 + b^2)(1 + c^2)

Từ hai bất đẳng thức trên, ta có: abc(1 + a^2)(1 + b^2)(1 + c^2) <= 1 * 1 = 1

Do đó, khi a, b, c là các số dương và a + b + c = 3, ta có abc(1 + a^2)(1 + b^2)(1 + c^2) <= 1, và vì 1 nhỏ hơn hoặc bằng 8, nên ta có: abc(1 + a^2)(1 + b^2)(1 + c^2) <= 8.

Vậy, chúng ta đã chứng minh được rằng biểu thức abc(1 + a^2)(1 + b^2)(1 + c^2) nhỏ hơn hoặc bằng 8 khi a, b, c là các số dương và a + b + c = 3.

11 tháng 7 2017

a/b + b/a >= 2
<=> (a^2+b^2)/ab >=2
<=> a^2+b^2>=2ab
<=> a^2-2ab+b^2>=0
<=> (a-b)^2 >= 0 (*)
Biểu thức (*) đúng; quá trình biến đổi là tương đương do vậy biểu thức đã được chứng minh.
Chúc bạn học giỏi.