Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{a}{\sqrt{a-1}}=\dfrac{a-1+1}{\sqrt{a-1}}=\sqrt{a-1}+\dfrac{1}{\sqrt{a-1}}\ge2\sqrt{\dfrac{\sqrt{a-1}}{\sqrt{a-1}}}=2\)
\(A_{min}=2\) khi \(a-1=1\Leftrightarrow a=2\)
Bài làm:
Ta có: \(A=x+\frac{1}{x^2}=\left(\frac{1}{x^2}+\frac{x}{8}+\frac{x}{8}\right)+\frac{3}{4}x\ge3\sqrt[3]{\frac{1}{x^2}.\frac{x}{8}.\frac{x}{8}}+\frac{3}{4}.2\)
\(=3.\frac{1}{4}+\frac{3}{2}=\frac{3}{4}+\frac{3}{2}=\frac{9}{4}\)
Dấu "=" xảy ra khi: \(\frac{1}{x^2}=\frac{x}{8}\Leftrightarrow x^3=8\Leftrightarrow x=2\)
Vậy \(Min\left(A\right)=\frac{9}{4}\)khi \(x=2\)
Học tốt!!!!
Ta có : \(\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2+b^2+2ab\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
Có : \(a,b\ge0\)
\(\Rightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\) ( đpcm )
Vậy ...
BĐT cần chứng minh tương đương:
\(\left(a+b\right)\left(\dfrac{a+b}{ab}\right)\ge4\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
Dấu "=" xảy ra khi và chỉ khi \(a=b\)
Áp dụng BĐT với hai số dương ta có:
`a+b>=2sqrt{ab}`
`1/a+1/b>=2/sqrt{ab}`
`=>(a+b)(1/a+1/b)>=2sqrt{ab}. 2/sqrt{ab}=4`
Dấu "=" xảy ra khi `a=b>0`
\(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow\frac{a+b}{2}-\sqrt{ab}\ge0\)
\(\Leftrightarrow\frac{a+b-2\sqrt{ab}}{2}\ge0\)
\(\Leftrightarrow\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2}\ge0\) (luôn đúng)
Vậy \(\frac{a+b}{2}\ge\sqrt{ab}\) (1)
\(\sqrt{ab}\ge\frac{2}{\frac{1}{a}+\frac{1}{b}}\)
\(\Leftrightarrow\sqrt{ab}\ge\frac{2ab}{a+b}\)
\(\Leftrightarrow\sqrt{ab}\ge\frac{2\sqrt{ab}^2}{a+b}\)
\(\Leftrightarrow\frac{2\sqrt{ab}}{a+b}\le1\)
\(\Leftrightarrow\frac{2\sqrt{ab}}{a+b}-1\le0\)
\(\Leftrightarrow\frac{2\sqrt{ab}-a-b}{a+b}\le0\)
\(\Leftrightarrow\frac{-\left(\sqrt{a}-\sqrt{b}\right)^2}{a+b}\le0\) (luôn đúng)
Vậy \(\sqrt{ab}\ge\frac{2}{\frac{1}{a}+\frac{1}{b}}\) (2)
Từ (1) ; (2) \(\Rightarrow\frac{a+b}{2}\ge\sqrt{ab}\ge\frac{2}{\frac{1}{a}+\frac{1}{b}}\) (đpcm)
nhân chéo lên
nhân a+b+c từ 9/a+b+c sang vế trái
vế phải còn 9
sau đó nhân vế trái ra
sử dụng bdt cosi là ra nha bn
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(\ge\frac{1}{2}\frac{4}{a+b}+\frac{1}{2}\frac{4}{b+c}+\frac{1}{2}\frac{4}{c+a}\)
\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)
Dấu "=" xảy ra <=> a = b = c