Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4,
Gọi ƯCLN của ( 5n+7, 7n+10) = d
Ta có:
5n+7 ⋮ d
7n+10 ⋮ d
=> 7.(5n+7) ⋮ d
5.(7n+10) ⋮ d
=> 35n + 49 ⋮ d
35n + 50 ⋮ d
=> 35n + 50 - (35n + 49) ⋮ d
=> 1 ⋮ d
=> d=1
Vậy phân số 5n+7/ 7n+10 là phân số tối giản (đpcm)
2.
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Để tìm số tự nhiên a nhỏ nhất thỏa mãn các điều kiện trên, chúng ta có thể thử từng giá trị của a cho đến khi tìm được số a thỏa mãn. Tuy nhiên, để giải quyết bài toán này một cách nhanh chóng, chúng ta có thể sử dụng phương pháp phân tích số học.
Theo yêu cầu của bài toán, ta có:
- A + 1 chia hết cho 2: Điều này có nghĩa là A là số lẻ.
- a chia hết cho tích của hai số nguyên tố liên tiếp: Điều này có nghĩa là a chia hết cho 2 hoặc a chia hết cho 3.
- Tích 2023 x a là số chính phương: Điều này có nghĩa là 2023 x a là một số mà căn bậc hai của nó là một số nguyên.
Với các điều kiện trên, chúng ta có thể thử từng giá trị của a để tìm số a thỏa mãn. Tuy nhiên, để giải quyết bài toán này một cách nhanh chóng, chúng ta có thể sử dụng phương pháp phân tích số học.
Ta có thể phân tích số 2023 thành tích của các thừa số nguyên tố như sau: 2023 = 7 x 17 x 17. Vì vậy, để tích 2023 x a là một số chính phương, ta cần a chia hết cho 7 và 17.
Tiếp theo, ta xét điều kiện a chia hết cho 2 hoặc a chia hết cho 3. Ta thử từng giá trị của a để tìm số a thỏa mãn các điều kiện trên.
Từ các phân tích trên, ta có thể thử các giá trị a như sau:
- a = 7 x 17 = 119: a chia hết cho 7 và 17, và tích 2023 x a = 2023 x 119 = 240737 chính phương.
- a = 2 x 7 x 17 = 238: a chia hết cho 2, 7 và 17, và tích 2023 x a = 2023 x 238 = 482074 chính phương.
Vậy, số tự nhiên a nhỏ nhất thỏa mãn các điều kiện trên là a = 119.
Dài thế bạn
Có đúng ko vậy bài này là đề thi thử mà có 0,5 mà sao khó zậy bạn
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
a)Có A=5+52+53+...+52016
=>5A=52+53+...+52017
=>4A=5A-A=52017-5
=>4A+5=52017-5+5=52017=5x
=>x=2017
b) Gọi 4 số tự nhiên liên tiếp là : k;k+1;k+2;k+3
Có k(k+1)(k+2)(k+3)+1
=k(k+3)(k+1)(k+2)+1
=(k2+3k)(k2+3k+2)+1
Đặt k2+3k=A
=A(A+2)+1
=A2+2A+1
=(A+1)2
=>ĐPCM
Tìm GTNN của biểu thức sau: A=4x^2-4xy+5y^2+20x-6y+2044