Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo ở đây: Câu hỏi của Mật khẩu trên 6 kí tự - Toán lớp 6 - Học toán với OnlineMath
Answer:
\(A=4+4^2+4^3+4^4+...+4^{99}\)
\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{96}+4^{97}\right)+\left(4^{98}+4^{99}\right)\)
\(=1\left(4+4^2\right)+4^2\left(4+4^2\right)+...+4^{95}\left(4+4^2\right)+4^{97}\left(4+4^2\right)\)
\(=1.20+4^2.20+...+4^{95}.20+4^{97}.20\)
\(=20.\left(1+4^2+...+4^{95}+4^{97}\right)\)
\(=5.4\left(1+4^2+...+4^{95}+4^{97}\right)⋮5\)
\(\Rightarrow A⋮5\)
c)D=4+42+43+44+...+42012
D=(4+42)+(43+44)+...+(42011+42012)
D=4.5+43.5+45.5+...+42011.5
D=5.(4+43+42011)
=>D chia hết cho 5
=>ĐPCM
a, ta xét:
\(\frac{1}{2}< \frac{2}{3}\)
\(\frac{3}{4}< \frac{4}{5}\)
\(\frac{5}{6}< \frac{6}{7}\)
.....
\(\frac{99}{100}< \frac{100}{101}\)
=>\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{100}{101}\)
hay:A<B(đpcm)
b,\(A.B=\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}.\frac{2}{3}.\frac{4}{5}.....\frac{100}{101}\)
\(=\frac{1.2.3....100}{2.3.4....101}=\frac{1}{101}\)
c,vì A<B (theo phần a)
=>A.A<B.A
Mà B.A=\(\frac{1}{101}\)
=>A2<101
Mà A2=\(\left(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\right)^2\)
=>\(\left(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\right)^2\)<\(\frac{1}{101}\)<\(\frac{1}{100}=\frac{1}{10^2}\)
=>\(\left(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\right)^2\)<\(\frac{1}{10^2}\)
=>\(\frac{1}{2}.\frac{3}{4}....\frac{99}{100}< \frac{1}{10}\)
Hay A<\(\frac{1}{10}\)
4C=\(5+\frac{5}{4}+\frac{5}{4^2}+.......+\frac{5}{4^{98}}\)
4C-C=\(5-\frac{5}{4^{99}}\)
3C=\(5-\frac{5}{4^{99}}<5\)
\(\Rightarrow C<\frac{5}{3}\)
A=5+52+...+599+5100
=(5+52)+...+(599+5100)
=5.(1+5)+...+599.(1+5)
=5.6+...+599.6
=6.(5+...+599) chia hết cho 6 (dpcm)
Ccá câu khcs bạn cứ dựa vào câu a mà làm vì cách làm tương tự chỉ hơi khác 1 chút thôi
Chúc bạn học giỏi nha!!
\(A=5+5^2+5^3+...+5^{100}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...\left(5^{99}+5^{100}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)
\(=5.6+5^3.6+...+5^{99}.6\)
\(=6\left(5+5^3+...+5^{99}\right)⋮6\)(đpcm)
\(B=2+2^2+2^3+...+2^{100}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)
\(=2.31+...+2^{96}.31\)
\(=31\left(2+...+9^{96}\right)⋮31\)(đpcm)
\(C=3+3^2+3^3+...+3^{60}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\)
\(=3.4+3^3.4+...+3^{59}.4\)
\(=4\left(3+3^3+...+3^{59}\right)⋮4\)(đpcm)
\(C=3+3^2+3^3+...+3^{60}\)
\(=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
\(=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)
\(=3.13+...+3^{58}.13\)
\(=13\left(3+...+3^{58}\right)⋮13\)(đpcm)
\(A=\dfrac{5}{4}+\dfrac{5}{4^2}+\dfrac{5}{4^3}+...+\dfrac{5}{4^{99}}\\ 4A=5+\dfrac{5}{4}+\dfrac{5}{4^2}+...+\dfrac{5}{4^{98}}\\ 4A-A=\left(5+\dfrac{5}{4}+\dfrac{5}{4^2}+...+\dfrac{5}{4^{98}}\right)-\left(\dfrac{5}{4}+\dfrac{5}{4^2}+\dfrac{5}{4^3}+...+\dfrac{5}{4^{99}}\right)\\ 3A=5-\dfrac{5}{4^{99}}\\ A=\left(5-\dfrac{5}{4^{99}}\right):3\\ A=\dfrac{5}{3}-\dfrac{5}{4^{99}}:3\\ A=\dfrac{5}{3}-\dfrac{5}{4^{99}\cdot3}< \dfrac{5}{3}\)
Vậy \(A< \dfrac{5}{3}\)