Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pham van chuong:
\(A=4^{10}.5^{23}\)
Tách số: \(A=4^9.5^{22}.4.5\Leftrightarrow A=4^9.5^{22}.20\)
Vì 20 có chữ số tận cùng là 0
=> Chữ số tận cùng của A là 0
^_^
Ta có:
A=4^10.5^23=2^20.5^23=(2.5)^20 . 5^3=10^20 . 125=100...000(20 c/số 0).125=12500...000(20 c/số 0)
=>A có 23 /số
A = 410.523 = 220.520.53 = 1020.53=125000.0000
Lập luận là ra số chữ số của A nha. KQ: 23 chữ số
A=410 . 523
A=220 . 520 . 53
A=(2.5)20 . 53
A=1020 . 53
A=125000000000000000000000
=> A có 23 chữ số
3.
Ta có :
A = 999999999982
= (99999999998 + 2)(99999999998 - 2) + 4
= 100 000 000 000 x 99999999996 + 4
= 99999999996000000000004
Từ đó ta có tổng các chữ số của A là
9 x 10 + 6 + 4 = 100.
tick đúg cho mình nha
1.
do tích các số lẻ có tận cùng là 7 nên trong các số đó, không có số nào tận cùng bằng 5
vậy nó có thể tận cùng bằng 3,1,7,9
mà đó là tích các số lẻ liên tiếp nên tích đó có thể có 3(tận cùng bằng 9,3,1 ), hoặc 4 ( tận cùng bằng 1,3,7,9)
tích trên không thể có 2 thừa số vì nếu có 2 thừa số thì chúng phải tận cùng băng 9,3 hoặc 1,7. mà các số tận cùng như trên không phải là các số lẻ liên tiếp
a) \(A=1+2+2^2+2^3+...+2^{99}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow A=2A-A=2+2^2+...+2^{100}-1-2-2^2-...-2^{99}=2^{100}-1\)
b) \(A=1+2+2^2+...+2^{99}=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+...+2^{96}\left(1+2+2^2+2^3\right)\)
\(=15+2^4.15+...+2^{96}.15=15\left(1+2^4+...+2^{96}\right)\)
\(=3.5\left(1+2^4+...2^{96}\right)\) chia hết cho 3 và 5
c) \(A=1+2+2^2+...+2^{99}\)
\(=1+2\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)
\(=1+2.7+...+2^{97}.7=1+7\left(2+...+2^{97}\right)\) chia 7 dư 1
=> A không chia hết cho 7
Cho S = 1+31+32+33+...+330
hãy tìm chữ số tân cùng của S ,từ đó suy ra S k phải là số chính phương .
Giải:
a) \(A=1+2+2^2+2^3+...+2^{2021}\)
\(2A=2+2^2+2^3+2^4+...+2^{2022}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2022}\right)-\left(1+2+2^2+2^3+...+2^{2021}\right)\)
\(A=2^{2022}-1\)
Vì \(2^{2022}>2^{2021}\) nên \(A>2^{2021}\)
b) Từ câu (a), ta có:
\(A=2^{2022}-1\)
\(A=2^{2020}.2^2-1\)
\(A=\left(2^4\right)^{505}.4-1\)
\(A=16^{505}.4-1\)
\(A=\left(\overline{...6}\right)^{505}.4-1\)
\(A=\overline{...6}.4-1\)
\(A=\overline{...4}-1\)
\(A=\overline{...3}\)
Vậy chữ số tận cùng của A là 3
c) Ta có:
\(A=1+2+2^2+2^3+...+2^{2021}\)
\(A=1.\left(1+2\right)+2^2.\left(1+2\right)+...+2^{2020}.\left(1+2\right)\)
\(A=1.3+2^2.3+...+2^{2020}.3\)
\(A=3.\left(1+2^2+...+2^{2020}\right)⋮3\)
Vậy \(A⋮3\left(đpcm\right)\)
d) Ta có:
\(A=1+2+2^2+2^3+...+2^{2021}\)
\(A=1.\left(1+2+2^2\right)+2^3.\left(1+2+2^2\right)+...+2^{2019}.\left(1+2+2^2\right)\)
\(A=1.7+2^3.7+...+2^{2019}.7\)
\(A=7.\left(1+2^3+...+2^{2019}\right)⋮7\)
Vậy \(A⋮7\left(đpcm\right)\)
Chúc bạn học tốt!
Ta có :
A = 410 . 523
A = 410 . 510 . 513
A = ( 4 . 5 )10 . 513
A = 2010 . 513
vì 2010 có tận cùng là 0 nên A có tận cùng là 0
A=4^10.5^23
A=[4^2]^5.[...5]
A=...6....5=...0
Vậy A có tận cùng là 0
mình nghĩ là vậy