Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1:
A=1/3+1/3^2+1/3^3+...+1/3^100
3A = 1 + 1/3 + 1/3^2 + ... + 1/3^99
3A - A = 1 - 1/3^100 = 2A
A = (1 - 1/3^100)/2
B2:
a)
để A nguyên <=> n + 3 ⋮ n - 5
=> n - 5 + 8 ⋮ n - 5
=> 8 ⋮ n - 5
=> ...
b)
để B nguyên <=> 1 - 2n ⋮ n + 3
=> 4 - 2n - 3 ⋮ n + 3
=> 4 - 2(n + 3) ⋮ n + 3
=> 4 ⋮ n + 3
=> ...
2.a)n^5+1⋮n^3+1
⇒n^2.(n^3+1)-n^2+1⋮n^3+1
⇒1⋮n^3+1
⇒n^3+1ϵƯ(1)={1}
ta có :n^3+1=1
n^3=0
n=0
Vậy n=0
b)n^5+1⋮n^3+1
Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0
Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!
2. (n+5)\(⋮\)(n-1)
(n-1+6) chia hết (n-1)
mà n-1 chia hết cho n-1
Để (n-1+6) chia hết cho (n-1) thì 6 pải chia hết cho (n-1)
Hay (n-1) thuộc ước của 6 mà ước của 6=....
Tự làm tiếp nha ^^
Nhiều thế bạn
Đăng từ từ thôi chứ
Làm thì còn lâu mới xong
a) A = 1 + 3 + 3^2 + ...+ 3^100
=> 3A = 3 + 3^2 + 3^3 + ...+ 3^101
=> 3A - A = 3101 - 1
2A = 3^101-1
\(A=\frac{3^{101}-1}{2}\)
b) ta co: 2A = 3101 - 1 ( phan a)
=> 2A + 1 = 3101 = 32.50+1
=> n = 50
a. A = 1 + 3 + 3\(^2\) + ..... + 3 \(^{100}\)
\(\Rightarrow\) 3A = 3 + 3\(^2\) + ... + 3 \(^{100}\) + 3 \(^{101}\)
\(\Rightarrow\) 3 A - A = 3\(^{101}\) - 1
\(\Rightarrow\) 2A = 3\(^{101}\) - 1
\(\Rightarrow\) A = \(\frac{3^{101}-1}{2}\)
1)
n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n
2)
Bạn làm tương tự nha!
A=3+32+33+...+32004
=>3A=32+33+34+..+32005
=>3A-A=(32+33+34+....+32005)-(3+32+33+..+32004)
=>2A=32005-3
=>2A+3=32005-3+3=32005
mà 2A+3=32n+1
=>32005=32n+1
=>2n+1=2005
=>2n=2004=>n=1002
vậy...
nhớ ****
câu này dễ mà bạn