K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 11 2021

Gọi G là trọng tâm ABC \(\Rightarrow G\left(-1;3\right)\)

\(T_{\overrightarrow{v}}\left(G\right)=G'\Rightarrow\left\{{}\begin{matrix}x'=-1+1=0\\y'=3+4=7\end{matrix}\right.\)

\(\Rightarrow G'\left(0;7\right)\)

11 tháng 8 2021

\(\overrightarrow{BC}=\left(-6;-3\right)\)

Trọng tâm của ΔABC là G(2; 1)

Khi tịnh tiến ΔABC thành ΔA'B'C' theo \(\overrightarrow{BC}=\left(-6;-3\right)\) thì G(2;1) cũng sẽ được tịnh tiến theo \(\overrightarrow{BC}=\left(-6;-3\right)\) thành G' (x;y)

⇒ \(\overrightarrow{GG'}=\overrightarrow{BC}\) = (-6 ; -3)

⇒ \(\left\{{}\begin{matrix}x-2=-6\\y-1=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-2\end{matrix}\right.\). Vậy G' (-4 ; -2)

31 tháng 7 2019

Chọn C

9 tháng 7 2017

Giải bài 2 trang 7 sgk Hình học 11 | Để học tốt Toán 11

+ Ta có :

Giải bài 2 trang 7 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 2 trang 7 sgk Hình học 11 | Để học tốt Toán 11 với B’ là điểm thỏa mãn Giải bài 2 trang 7 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 2 trang 7 sgk Hình học 11 | Để học tốt Toán 11 với C’ là điểm thỏa mãn Giải bài 2 trang 7 sgk Hình học 11 | Để học tốt Toán 11

Vậy Giải bài 2 trang 7 sgk Hình học 11 | Để học tốt Toán 11 (hình vẽ).

Giải bài 2 trang 7 sgk Hình học 11 | Để học tốt Toán 11 ⇔ D đối xứng với G qua A (hình vẽ).

NV
18 tháng 10 2020

Theo công thức trọng tâm\(\Rightarrow G\left(-1;3\right)\)

\(\overrightarrow{u}=\overrightarrow{AG}=\left(-4;3\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_{G'}=x_G-4=-5\\y_{G'}=y_G+3=6\end{matrix}\right.\)

\(\Rightarrow G'\left(-5;6\right)\)

(Hay G chính là trung điểm của AG')

Phép tịnh tiến bảo toàn diện tích, độ dài, góc, thứ tự điểm, phương của đường thẳng...

16 tháng 10 2021

Mình tính sao mà ra đc là G bằng (-1;3) v ạ

Số phát biểuđúng là:a) Phép tịnh tiến biến đường thẳng thành đường thẳng song song hoặc trùng với nób) Phép biến hình biến đường tròn thành đường tròn có bán kính bằng nó là phép tịnh tiếnc) Phép tịnh tiến biến tứ giác thành tứ giác bằng nód) Phép tịnh tiến biến đường tròn thành chính nóe) Phép đồng nhất biến mọi hình thành chính nóf) Phép dời hình là 1 phép biến hình không...
Đọc tiếp

Số phát biểuđúng là:

a) Phép tịnh tiến biến đường thẳng thành đường thẳng song song hoặc trùng với nó

b) Phép biến hình biến đường tròn thành đường tròn có bán kính bằng nó là phép tịnh tiến

c) Phép tịnh tiến biến tứ giác thành tứ giác bằng nó

d) Phép tịnh tiến biến đường tròn thành chính nó

e) Phép đồng nhất biến mọi hình thành chính nó

f) Phép dời hình là 1 phép biến hình không làm thay đồi khoảng cách giữa hai điểm bất kì

g) Phép chiếu lên đường thẳng không là phép dời hình

h) Với bất kì 2 điểm A, B và ảnh A’, B’ của chúng qua 1 phép dời hình, ta luôn có A’B = AB’.

i) Nếu phép dời hình F biến tam giác ABC thành tam giác A’B’C’ thì trọng tâm tam giác ABC biến thành trọng tâm tam giác A’B’C’.

k) Phép tịnh tiến theo vectơ là phép đồng nhất.

l) Nếu phép dời hình biến điểm A thành điểm B ( B ≠ A ) thì nó cũng biến điểm B thành A

m) Nếu phép dời hình biến điểm A thành điểm B và biến điểm B thành điểm C thì AB = BC

A.5

B.6

C.7

D.8

1
4 tháng 5 2018

Đáp án D

Phát biểuđúng: a , c, e, f, g, i, j, l

b. Phép biến hình biến đường tròn thành đường tròn có bán kính bằng nó có thể là phép tịnh tiến

d. Phép tịnh tiến biến đường tròn thành đường tròn có cùng bán kính

h. Với bất kì 2 điểm A, B và ảnh A’, B’ của chúng qua 1 phép dời hình, ta luôn có AB = A’B’.

k. Nếu phép dời hình biến điểm A thành điểm B thì nó cũng biến điểm B thành A (phát biểu không đúng với phép tịnh tiến)

31 tháng 3 2017

undefined

Gọi phép dời hình đó là f. Do f biến các đoạn thẳng AB, AC tương ứng thành các đoạn thẳng A'B', A'C' nên nó cũng biến các trung điểm M, N của các đoạn thẳng AB, AC tương ứng theo thứ tự thành các trung điểm M', N' của các đoạn thẳng A'B', A'C'. Vậy f biến các trung tuyến CM, BN của tam giác ABC tương ứng thành các trung tuyến C'M', B'N' của tam giác A'B'C'. Từ đó suy ra f biến trọng tâm G của tam giác ABC của CM và BN thành trọng tâm G' của tam giác A'B'C' là giao của C'M' và B'N'.

31 tháng 3 2017

undefined

Gọi phép dời hình đó là f. Do f biến các đoạn thẳng AB, AC tương ứng thành các đoạn thẳng A'B', A'C' nên nó cũng biến các trung điểm M, N của các đoạn thẳng AB, AC tương ứng theo thứ tự thành các trung điểm M', N' của các đoạn thẳng A'B', A'C'. Vậy f biến các trung tuyến CM, BN của tam giác ABC tương ứng thành các trung tuyến C'M', B'N' của tam giác A'B'C'. Từ đó suy ra f biến trọng tâm G của tam giác ABC của CM và BN thành trọng tâm G' của tam giác A'B'C' là giao của C'M' và B'N'.

31 tháng 3 2017

undefined

- Dựng hình bình hành ABB'G và ACC'G. Khi đó ta có: \(\overrightarrow{AG}=\overrightarrow{BB'}=\overrightarrow{CC'}\)

. Suy ra \(^T\overrightarrow{AG}\left(A\right)=G,^T\overrightarrow{AG}\left(B\right)=B',^T\overrightarrow{AG}\left(C\right)=C'\)

Do đó ảnh của tam giác ABC qua phép tịnh tiến theo vectơ \(\overrightarrow{AG}\) là tam giác GB'C'.

- Trên tia GA lấy điểm D sao cho A là trung điểm của GD. Khi đó ta có \(\overrightarrow{DA}=\overrightarrow{AG}\). Do đó, \(^T\overrightarrow{AG}\left(D\right)=A\).

31 tháng 3 2017

undefined

- Dựng hình bình hành ABB'G và ACC'G. Khi đó ta có: −−→AG=−−→BB′=−−→CC′AG→=BB′→=CC′→

. Suy ra T−−→AG(A)=G,T−−→AG(B)=B′,T−−→AG(C)=C′TAG→(A)=G,TAG→(B)=B′,TAG→(C)=C′

Do đó ảnh của tam giác ABC qua phép tịnh tiến theo vectơ −−→AGAG→ là tam giác GB'C'.

- Trên tia GA lấy điểm D sao cho A là trung điểm của GD. Khi đó ta có −−→DA=−−→AGDA→=AG→. Do đó, T−−→AG(D)=ATAG→(D)=A.

19 tháng 7 2017

Đáp án B