Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (a3 - 3ab2)2 = a^6 - 6a^4b^2 + 9a^2b^4 = 4
(b^3 - 3a^2b)^2 = b^6 - 6a^2b^4 + 9a^4b^2 = 121
Cộng vế thep vế ta đựơc (a^2 + b^2)^3 = 125
=> a^2 + b^2 = 5
Thế vào 1 trong 2 cái đầu là giải ra
\(a^3-3ab^2=-2\)
\(\Rightarrow\left(a^3-3ab^2\right)^2=4\)
\(\Rightarrow a^6-6a^4b^2+9a^2b^4=4\left(1\right)\)
\(b^3-3a^2b=11\)
\(\Rightarrow\left(b^3-3a^2b\right)^2=121\)
\(\Rightarrow b^6-6a^2b^4+9a^4b^2=121\left(2\right)\)
\(\left(1\right)+\left(2\right)\Rightarrow a^6+3a^4b^2+3a^2b^4+b^6=125\)
\(\Rightarrow\left(a^2+b^2\right)^3=125\Rightarrow a^2+b^2=5\)
Ta có: (a3 - 3ab2) 2 = a6 - 6a4b2 + 9a2b4 = 25
(b3 - 3a2b)2 = b6 - 6a4b2 + 9a4b2 = 100
⇒ (a3 - 3a2b)2 - (b3 - 3a2b)2 = a6 - 6a4b2 + 9a2b4 + b6 - 6a2b4 + 9a4b2 = 125
⇔ a6 + 3a4b2 = 3a2b4 + b6 = 125
⇔ (a2 + b2)3 = 125
⇒ a2 + b2 = 5
Ta có: (a3 - 3ab2) 2 = a6 - 6a4b2 + 9a2b4 = 25
(b3 - 3a2b)2 = b6 - 6a4b2 + 9a4b2 = 100
⇒ (a3 - 3a2b)2 - (b3 - 3a2b)2 = a6 - 6a4b2 + 9a2b4 + b6 - 6a2b4 + 9a4b2 = 125
⇔ a6 + 3a4b2 + 3a2b4 + b6 = 125
⇔ (a2 + b2)3 = 125
⇒ a2 + b2 = 5
\(\hept{\begin{cases}a^3-3ab^2=2\\b^3-3a^2b=-11\end{cases}\Rightarrow\hept{\begin{cases}\left(a^3-3ab^2\right)^2=4\\\left(b^3-3a^2b\right)^2=121\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}a^6-6a^4b^2+9a^2b^4=4\left(1\right)\\b^6-6a^2b^4+9a^4b^2=121\left(2\right)\end{cases}}\)
Cộng ( 1 ) với (2 ), ta được : \(a^6+b^6+3a^2b^4+3a^4b^2=125\)
\(\Rightarrow\left(a^2+b^2\right)^3=125\Rightarrow a^2+b^2=5\)
Ta có: \(a^3-3ab^2=2\)
\(\Rightarrow\left(a^3-3ab^2\right)^2=4\)
\(\Leftrightarrow a^6-6a^4b^2+9a^2b^4=4\left(1\right)\)
Lại có: \(b^3-3a^2b=-11\)
\(\Rightarrow\left(b^3-3a^2b\right)=121\)
\(\Leftrightarrow b^6-6a^2b^4+9a^4b^2=121\left(2\right)\)
Lấy \(\left(1\right)+\left(2\right)\)ta được:
\(a^6-6a^4b^2+9a^2b^4+b^6-6a^2b^4+9a^4b^2=125\)
\(\Leftrightarrow a^6+3a^4b^2+b^6+3a^2b^4=125\)
\(\Leftrightarrow\left(a^2+b^2\right)^3=125\)
\(\Leftrightarrow a^2+b^2=5\)
Vậy ...
Ta có:\(a^3-3ab^2+b^3-3a^2b=15\)
\(\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-3ab\left(a+b\right)=15\)
\(\Rightarrow\left(a+b\right)\left(a^2-4ab+b^2\right)=15\)
Đến đây thì đơn giản rồi,bạn lập bảng xét ước nữa là xong
@Khong Biet trả lời sai rồi. đây có phải bài nghiệm nguyên đâu mà lập bảng xét dấu
Ta có :\(\left(a^3+3ab^2\right)^2=a^6+6a^4b^2+9a^2b^4=2006^2\)
\(\left(b^3+3a^2b\right)^2=b^6+6a^2b^4+9a^4b^2=2005^2\)
\(\Rightarrow\left(a^3+3ab^2\right)^2-\left(b^3+3a^2b\right)^2=a^6-3a^4b^2+3a^2b-b^6\)
\(=2006^2-2005^2\)
Hay \(\left(a^2-b^2\right)^3=4011\)
Vậy \(P=a^2-b^2=^3\sqrt{4011}\)
Theo đề bài ta có:
\(a^3+3ab^2=2006\)
\(b^3+3a^2b=2005\)
\(\Rightarrow a^3+3ab^2-3a^2b-b^3=2006-2005\)
\(\Leftrightarrow a^3-3a^2b+3ab^2-b^3=1\)
\(\Leftrightarrow\left(a-b\right)^3=1\)
\(\Leftrightarrow a-b=1\)
Ta có:
\(P=a^2-b^2\)
\(P=\left(a-b\right)\left(a+b\right)\)
\(P=1\left(a+b\right)\)
VẬY \(P=a+b\)