K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Ta có: \(N=a^3+b^3+3ab\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\)

\(=1-3ab+3ab\)

=1

1: Tham khảo:

loading...

=>KI//BC

25 tháng 10 2018

Ta có: \(x+y=7\Rightarrow\left(x+y\right)^2=49\Rightarrow x^2+y^2+2xy=49\)

Mà: \(x^2+y^2=25\Rightarrow2xy=24\Rightarrow xy=12\)

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=7\left(25-12\right)=91\)

(Vì\(x+y=7;x^2+y^2=25;xy=12\))

Xét tứ giác ABCD có 

AB=BC=CD=AD

nên ABCD là hình thoi

Suy ra: \(\widehat{A}=\widehat{C}\)

mà \(\widehat{A}=\widehat{B}\)

nên \(\widehat{B}=\widehat{C}=90^0\)

\(\Leftrightarrow\widehat{A}=\widehat{D}=90^0\)

5 tháng 3 2021

answer-reply-image

16 tháng 1 2021

a3 + b3 + c3 = 3abc 

⇒ a3 + b3 + c3 - 3abc = 0

⇒ ( a3 + b3 ) + c3 - 3abc = 0

⇒ ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0

⇒ [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0

⇒ ( a + b + c )[ ( a + b )2 - ( a + b ).c + c2 ] - 3ab( a + b + c ) = 0

⇒ ( a + b + c )( a2 + b2 + c2 - ab - bc - ac ) = 0

Vì a + b + c ≠ 0

⇒ a2 + b2 + c2 - ab - bc - ac = 0

⇒ 2( a2 + b2 + c2 - ab - bc - ac ) = 0

⇒ 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0

⇒ ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( a2 - 2ac + c2 ) = 0

⇒ ( a - b )2 + ( b - c )2 + ( a - c )2 = 0

Vì \(\hept{\begin{cases}\left(a-b\right)^2\\\left(b-c\right)^2\\\left(a-c\right)^2\end{cases}}\ge0\forall a,b,c\)⇒ ( a - b )2 + ( b - c )2 + ( a - c )2 ≥ 0 ∀ a,b,c

Dấu "=" xảy ra khi a = b = c

Khi đó \(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{a^2+a^2+a^2}{\left(a+a+a\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

17 tháng 1 2021

Từ \(a^3+b^3+c^3=3abc\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)^3-3\left(a+b\right).c\left(a+b+c\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(a+b\right)c-3ab\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ca-3ab-3bc-3ca\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

Vì \(a+b+c\ne0\)\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\left(a-b\right)^2\ge0\)\(\left(b-c\right)^2\ge0\)\(\left(c-a\right)^2\ge0\)\(\forall a,b,c\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)\(\forall a,b,c\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\)

Thay \(a=b=c\)vào N ta có: \(N=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

Vậy \(N=\frac{1}{3}\)

11 tháng 5 2021

viết lại đi lắn nót vào mới đọc được và hiểu được để mà trả lời chứ viết rõ chữ vào đừng viết tắt

24 tháng 10 2019

Sửa đề: Cho \(a^2+b^2+c^2=m\)

Tính: \(A=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2a-b\right)^2\)

Giải: 

Ta có: \(\left(x+y-z\right)^2=\left(x+y\right)^2-2\left(x+y\right).z+z^2=x^2+y^2+z^2+2xy-2xz-2yz\)

Ứng dụng vào bài trên:

\(A=\left[\left(2a\right)^2+\left(2b\right)^2+c^2+2\left(2a\right)\left(2b\right)-2\left(2a\right)c-2\left(2b\right)c\right]\)

\(+\left[\left(2b\right)^2+\left(2c\right)^2+a^2+2\left(2b\right)\left(2c\right)-2\left(2b\right)a-2\left(2c\right)a\right]\)

\(+\left[\left(2c\right)^2+\left(2a\right)^2+b^2+2\left(2c\right)\left(2a\right)-2\left(2c\right)b-2\left(2a\right)b\right]\)

\(=4a^2+4b^2+c^2+8ab-4ac-4bc\)

\(+4b^2+4c^2+a^2+8bc-4ba-4ca\)

\(+4c^2+4a^2+b^2+8ca-4cb-4ab\)

\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)

\(=9m\).

11 tháng 9 2021

\(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)=x^3-5x^2+x-2x^2+10x-2-x^3-11x=-7x^2-2\)

11 tháng 9 2021

Cảm ơn bạn ạ