Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có A=n2(n-1)+(n-1)=(n-1)(n2+1)
vì A nguyên tố nên A chỉ có 2 ước
TH1 n-1=1 và n2+1 nguyên tố => n=2 và n2+1=5 thỏa mãn
TH2 n2+1=1 và n-1 nguyên tố => n=0 và n-1 = -1 k thỏa mãn
vậy n=2
xin lỗi mình chỉ biết làm phần a thôi còn phần b,c bạn tự làm nhé
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
1. Câu hỏi của Nguyễn Mai - Toán lớp 9 - Học trực tuyến OLM
3.
\(a,A=n^3-n+7=n\left(n-1\right)\left(n+1\right)+7\)
Có \(\left(n-1\right)n\left(n+1\right)\) là tích 3 số tự nhiên lt với \(n\in N\) nên chia hết cho 6
Mà 7 ko chia hết cho 6 nên A không chia hết cho 6
\(b,B=n^3-n=n\left(n-1\right)\left(n+1\right)\)
Như câu a thì B chia hết cho 6 hay B chia hết cho 3
Ta thấy n lẻ nên \(n=2k+1\left(k\in N\right)\)
\(\Rightarrow B=n^3-n=\left(n-1\right)n\left(n+1\right)\\ =\left(2k+1-1\right)\left(2k+1\right)\left(2k+1+1\right)\\ =2k\left(2k+1\right)\left(2k+2\right)\\ =4k\left(k+1\right)\left(2k+1\right)\)
Mà k+1 và 2k+1 là 2 số tự nhiên lt nên chia hết cho 2
\(\Rightarrow B⋮4\cdot2\left(2k+1\right)=8\left(2k+1\right)⋮8\)
Vì B chia hết cho cả 3;8 và \(\left(3;8\right)=1\) nên B chia hết 24
\(c,C=n^4+6n^3+11n^2+6n=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
Ta thấy đây là 4 số tự nhiên lt với \(n\in N\) nên chia hết cho 24
a, Vì n \(\in\)N => n2 là số chính phương
mà 9 = 32 là số chính phương
=> n2 + 9 là số chính phương.
Vậy A = n2 + 9 là số chính phương.
CHÚC BẠN HỌC TỐT!!!!