K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

\(a^2+b^2+c^2=\frac{b^2-c^2}{a^2+3}+\frac{c^2-a^2}{b^2+4}+\frac{a^2-b^2}{c^2+5}\)

<=>\(a^2-\frac{a^2-b^2}{c^2+5}+b^2-\frac{b^2-c^2}{a^2+3}+c^2-\frac{c^2-a^2}{b^2+4}=0\)

<=>\(\frac{ac^2+4a^2+b^2}{c^2+5}+\frac{ba^2+4b^2+c^2}{a^2+3}+\frac{ab^2+4c^2+a^2}{b^2+4}=0\)

Vì \(VT\ge0\) nên dấu "=" xảy ra khi a=b=c=0 => S = 2017 + bc + 20c=2017+0.0+20.0=2017

24 tháng 3 2017

Ta có:

\(a^2+b^2+c^2=\frac{b^2-c^2}{3+a^2}+\frac{c^2-a^2}{4+b^2}+\frac{a^2-b^2}{5+c^2}\)

\(\Leftrightarrow a^2+\frac{a^2}{4+b^2}-\frac{a^2}{5+c^2}+b^2+\frac{b^2}{5+c^2}-\frac{b^2}{3+a^2}+c^2+\frac{c^2}{3+a^2}-\frac{c^2}{4+b^2}=0\)

 \(\Leftrightarrow a^2.\frac{b^2c^2+4b^2+5c^2+21}{\left(4+b^2\right)\left(5+c^2\right)}+b^2.\frac{a^2c^2+6a^2+2c^2+13}{\left(3+a^2\right)\left(5+c^2\right)}+c^2.\frac{a^2b^2+3a^2+4b^2+13}{\left(3+a^2\right)\left(4+b^2\right)}=0\)

Dấu = xảy ra khi \(a=b=c=0\)

Thế vô ta có: \(S=2016ab+bc+20c=0\)

26 tháng 3 2017

-  Tớ ko hiểu -_- 

21 tháng 8 2020

a) \(a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(c-a\right)^2+\left(b-c\right)^2=0\)

Ta có : \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(c-a\right)^2\ge0\\\left(b-c\right)^2\ge0\end{cases}}\)

\(\Rightarrow\left(a-b\right)^2+\left(c-a\right)^2+\left(b-c\right)^2=0\)

\(\Leftrightarrow a=b=c\)

21 tháng 8 2020

a. \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ab-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)

29 tháng 6 2018

Ta có \(\frac{2a+b+c}{b+c}=\frac{2b+c+a}{c+a}=\frac{2c+a+b}{a+b}\Rightarrow\frac{2a}{b+c}+1=\frac{2b}{a+c}+1=\frac{2c}{a+b}+1\)

=> \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{3}{2}\)

^_^ 

21 tháng 12 2018

Bài 1: Đặt \(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}=k\)

\(\Rightarrow\hept{\begin{cases}a=2016k\\b=2017k\\c=2018k\end{cases}}\).Thay vào M,ta có:

 \(M=4\left(2016k-2017k\right)\left(2017k-2018k\right)-\left(2018k-2016k\right)^2\)

\(=4.\left(-1k\right)\left(-1k\right)-\left(2k\right)^2\)

\(=4k^2-4k^2=0\)

AH
Akai Haruma
Giáo viên
9 tháng 11 2019

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt\). Khi đó:

a)

\(\frac{a^2}{a^2+b^2}=\frac{(bt)^2}{(bt)^2+b^2}=\frac{b^2t^2}{b^2(t^2+1)}=\frac{t^2}{t^2+1}(1)\)

\(\frac{c^2}{c^2+d^2}=\frac{(dt)^2}{(dt)^2+d^2}=\frac{d^2t^2}{d^2(t^2+1)}=\frac{t^2}{t^2+1}(2)\)

Từ $(1);(2)$ suy ra đpcm.

b)

\(\left(\frac{a+c}{b+d}\right)^2=\left(\frac{bt+dt}{b+d}\right)^2=\left(\frac{t(b+d)}{b+d}\right)^2=t^2(3)\)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{(bt)^2+(dt)^2}{b^2+d^2}=\frac{t^2(b^2+d^2)}{b^2+d^2}=t^2(4)\)

Từ $(3);(4)\Rightarrow \left(\frac{a+c}{b+d}\right)^2=\frac{a^2+c^2}{b^2+d^2}$ (đpcm)

AH
Akai Haruma
Giáo viên
9 tháng 11 2019

Bài 2:

Từ $a^2=bc\Rightarrow \frac{a}{c}=\frac{b}{a}$

Đặt $\frac{a}{c}=\frac{b}{a}=t\Rightarrow a=ct; b=at$. Khi đó:

a)

$\frac{a^2+c^2}{b^2+a^2}=\frac{(ct)^2+c^2}{(at)^2+a^2}=\frac{c^2(t^2+1)}{a^2(t^2+1)}=\frac{c^2}{a^2}=(\frac{c}{a})^2=\frac{1}{t^2}(1)$

Và:

$\frac{c}{b}=\frac{a}{tb}=\frac{a}{t.at}=\frac{1}{t^2}(2)$

Từ $(1);(2)$ suy ra đpcm.

b)

$\left(\frac{c+2019a}{a+2019b}\right)^2=\left(\frac{c+2019a}{ct+2019at}\right)^2=\left(\frac{c+2019a}{t(c+2019a)}\right)^2=\frac{1}{t^2}(3)$

Từ $(2);(3)$ suy ra đpcm.

20 tháng 11 2018

\(a+c=2b\)

\(\Rightarrow2bd=\left(a+c\right).d=cb+cd\)

\(\Rightarrow ad+cd=cb+cd\)

\(\Rightarrow ad+cd-cd=cb\)

\(ad=cb\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

29 tháng 3 2017

ai trả lời đúng và đầy đủ, dễ hiểu mk cho thề, hứa, bảo đảm.....:))

9 tháng 8 2017

1) x(x-2) + 3(x+5) + 4x -15 =0

=> x\(^2\) - 2x + 3x + 15 + 4x - 15 = 0

=> ( x\(^2\) -2x + 3x + 4x ) + 15 - 15 = 0

=> x \(^2\) -2x+3x+4x = 0

=> x(x-2+3+4)=0

\(\Rightarrow\orbr{\begin{cases}x=0\\x-2+3+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x+5=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-5\end{cases}}}\)

2) \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}=2017\)

\(\Rightarrow2017\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=2017.2017\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=2017^2\)

\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}=2017^2\)

\(\Rightarrow\left(\frac{a+b}{a+b}+\frac{c}{a+b}\right)+\left(\frac{b+c}{b+c}+\frac{a}{b+c}\right)+\left(\frac{a+c}{a+c}+\frac{c}{a+b}\right)=2017^2\)

\(\Rightarrow\left(1+\frac{c}{a+b}\right)+\left(1+\frac{a}{b+c}\right)+\left(1+\frac{c}{a+b}\right)=2017^2\)

\(\Rightarrow3+\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=2017^2\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=2017^2-3\)

9 tháng 8 2017

xin lỗi mik xin đc sửa lại 3 dòng cuối vì mik ghi nhầm :

\(\Rightarrow\left(\frac{a+b}{a+b}+\frac{c}{a+b}\right)+\left(\frac{b+c}{b+c}+\frac{a}{b+c}\right)+\left(\frac{a+c}{a+c}+\frac{b}{a+c}\right)=2017^2\)

\(\Rightarrow\left(1+\frac{c}{a+b}\right)+\left(1+\frac{a}{b+c}\right)+\left(1+\frac{b}{a+c}\right)=2017^2\)

\(\Rightarrow3+\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}=2017^2\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=2017^2-3\)