Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)a2+b2+c2+3=2(a+b+c)
=>a2+b2+c2+1+1+1-2a-2b-2c=0
=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0
=>(a-1)2+(b-1)2+(c-1)2=0
=>a-1=b-1=c-1=0 <=>a=b=c=1
-->Đpcm
b)(a+b+c)2=3(ab+ac+bc)
=>a2+b2+c2+2ab+2ac+2bc -3ab-3ac-3bc=0
=>a2+b2+c2-ab-ac-bc=0
=>2a2+2b2+2c2-2ab-2ac-2bc=0
=>(a2- 2ab+b2)+(b2-2bc+c2) + (c2-2ca+a2) = 0
=>(a-b)2+(b-c)2+(c-a)2=0
Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0
=>a-b hoặc b=c hoặc a=c
=>a=b=c
-->Đpcm
c)a2+b2+c2=ab+bc+ca
=>2(a2+b2+c2)=2(ab+bc+ca)
=>2a2+2b2+c2=2ab+2bc+2ca
=>2a2+2b2+c2-2ab-2bc-2ca=0
=>a2+a2+b2+b2+c2+c2-2ab-2bc-2ca=0
=>(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ca+c2)=0
=>(a-b)2+(b-c)2+(a-c)2=0
Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0
=>a-b hoặc b=c hoặc a=c
=>a=b=c
-->Đpcm
Ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=2\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\)
\(\Leftrightarrow-\left(a-b\right)^2-\left(b-c\right)^2-\left(c-a\right)^2=0\)
Vì \(\left\{{}\begin{matrix} -\left(a-b\right)^2\le0\\-\left(b-c\right)^2\le0\\-\left(c-a\right)^2\le0\end{matrix}\right.\Rightarrow-\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\le0\)
Dấu ''= '' xảy ra \(\Leftrightarrow a=b=c\)
Vậy với a=b=c thì \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(a^2+b^2+c^2=ab+bc+ca\)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Rightarrow2.\left(a^2+b^2+c^2-ab-bc-ca\right)=2.0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\left(a^2+b^2-2ab\right)+\left(a^2+c^2-2ac\right)+\left(b^2+c^2-2bc\right)=0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
Mà \(\left(a-b\right)^2\ge0\)
\(\left(a-c\right)^2\ge0\)
\(\left(b-c\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}}\)
\(\Rightarrow a=b=c\)
Vậy ...
a. \(2\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Leftrightarrow2a^2+2b^2=a^2+b^2-2ab\)
\(\Leftrightarrow a^2+b^2=-2ab\)
\(\Leftrightarrow a^2+2ab+b^2=0\)
\(\Leftrightarrow\left(a+b\right)^2=0\)
\(\Leftrightarrow a+b=0\Leftrightarrow a=-b\) (đpcm)
b. \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Vì \(\left(a-1\right)^2;\left(b-1\right)^2;\left(c-1\right)^2\ge0\)
\(\Rightarrow\left(a-1\right)^2=\left(b-1\right)^2=\left(c-1\right)^2=0\)
\(\Leftrightarrow a-1=b-1=c-1=0\Leftrightarrow a=b=c=1\)
c. \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Tương tự câu b ta có a = b = c
Ta áp dụng Bđt Cô-si
\(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2\sqrt{a^2b^2}=2ab\left(1\right)\)
\(\left(b-c\right)^2\ge0\Leftrightarrow b^2+c^2\ge2\sqrt{b^2c^2}=2bc\left(2\right)\)
\(\left(a-c\right)^2\ge0\Leftrightarrow a^2+c^2\ge2\sqrt{a^2c^2}=2ac\left(3\right)\)
Cộng theo vế của (1),(2) và (3) có:
\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\)
\(\Rightarrow a^2+b^2+c^2\ge ab+ac+bc\)
Dấu = khi a=b=c
-->Đpcm
Ta có: \(a^2+b^2+c^2=ab+bc+ca\)
<=>\(a^2+b^2+c^2-ab-bc-ca=0\)
<=>\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
<=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
<=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0,\left(b-c\right)^2\ge0,\left(c-a\right)^2\ge0\)
=>\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}< =>\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}}\)
Vậy a=b=c
Ta có: \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac-3ab-3bc-3ac=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ac-2bc-2ab=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
\(\Leftrightarrow a=b=c\)
=> a^2—2ab+b^2 +b^2-2bc+c^2+c^2-2ca+a^2-4a^2-4b^2-4c^2+4ab+4bc+4ca=0
=> —(2a^2+2^2+2c^2-2ab-2bc-2ca)=0
=>(a-b)^2+(b-c)^2+(c-a)^2=0
=>a=b;b=c;c=a
=>a=b=c
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\Leftrightarrow2\left(a^2+b^2+c^2-ab-b-ac\right)\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)
Dấu ' = ' xảy ra khi a=b=c (dpcm)