K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2015

A=(2+22) +(23+24)+......+(259+260) = 2(1+2) +23(1+2) + ......+ 259(1+2) = 3(2+23+ 25+......+ 259) chia hết cho 3

A=(2+22+23)+(24+25+26) + ...........+(258+259+260)= 2 (1+2+22) +24 (1+2+22) +.................+ 258 (1+2+22)

                                                                        = 3.7             + 24.7             +................+ 258.7  chia hết cho 7

A= (2+23) + ( 22+ 24) +(25+27) +(26+28) +...................+ (258+260)

   =2(1+22) +22 (1+22) +25 (1+22)+26(1+22) + ..................+ 258 (1+22)  =  2. 5  + 22 .5  +.............+258.5  chia hết cho 5

mà A chía hết cho 3 => A chia hết cho 3.5 =15

7 tháng 11 2015

\(A=2+2^2+2^3+2^4+2^5+...+2^{60}\)

\(\Rightarrow2A=2.\left(2+2^2+2^3+2^4+2^5+...+2^{60}\right)\)

\(2A=2^2+2^3+2^4+2^5+2^6+...+2^{61}\)

Vậy \(2A-A=\left(2^2+2^3+2^4+2^5+2^6...+2^{61}\right)-\left(2+2^2+2^3+2^4+2^5+...+2^{60}\right)\)

\(A=2^{61}-2\)

25 tháng 10 2022

vì tổng của S chia hết cho 3 nên S chia hết cho 3. có thế cũng hỏi =))

Chúc bạn an toàn

22 tháng 12 2021

\(S=\left(1+2\right)+...+2^6\left(1+2\right)=3\left(1+...+2^6\right)⋮3\)

27 tháng 12 2020
Mình làm được b1 thôi nha A=2+2²+2³+...+2^60 2A=2(2+2²+2³+...+2^60) 2A=2²+2³+2⁴+...+2^61 2A-A=(2²+2³+2⁴+...+2^61)-(2+2²+2³+...+2^60) A=2^61-2 Vậy A=2^61-2

Cảm ơi phạm quỳnh anh nha

23 tháng 12 2015

S = (1+ 2)+(22 + 23 )+( 24 + 27) + (26 + 25)

S=   3+45+51+51

S=3+3.15+3.17+3.17

S=3.(1+15+17.2): hết 3

tick nha nhanh nhất nè

13 tháng 1 2017

A = 2 + 22 + 23 + 24 + ... + 219 + 220

A = (2 + 22) + (23 + 24) +... + (219 + 220)

A = 2.(1+2) + 23.(1 + 2) +... + 219.(l + 2)

A = 2.3 + 23.3 +...+ 219.3 Do đó A chia hết cho 3

8 tháng 1 2021

do đó A chia hết cho 3

Ta có: \(A=2+2^2+2^3+2^4+...+2^{99}+91\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{97}+2^{98}+2^{99}\right)+91\)

\(=2\cdot\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)+91\)

\(=7\cdot\left(1+2^4+...+2^{97}\right)+7\cdot13\)

\(=7\cdot\left(1+2^4+...+2^{97}+13\right)⋮7\)(đpcm)

Ta có: \(A=2+2^2+2^3+2^4+...+2^{99}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{97}+2^{98}+2^{99}\right)\)

\(=2\cdot\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)

\(=\left(1+2+2^2\right)\cdot\left(2+2^4+...+2^{97}\right)\)

\(=7\cdot\left(2+2^4+...+2^{97}\right)⋮7\)(đpcm)

2 tháng 1 2022

S=(1+2)+...+2^6(1+2)=3(1+...+2^6)⋮3

2 tháng 12 2021

\(S=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{95}+2^{96}\right)\\ S=\left(1+2\right)\left(2+2^3+...+2^{95}\right)\\ S=3\left(2+2^3+...+2^{95}\right)⋮3\left(1\right)\\ S=\left(2+2^2\right)+2^3\left(1+2^2+...+2^{93}\right)\\ S=8+8\left(1+2^2+...+2^{93}\right)⋮8\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow S⋮24\)