Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CO:a=2^1+2^2+2^3+2^4+2^5+2^6+..........2^2010+2^2011+2^2012+2^2013+2^2014+2^2015.
a=2.[2+2^2+2^3+2^4+2^5]+............+2^2010.[2+2^2+2^3+2^4+2^5]
a=2.62+..........+2^2010.62
a=62.[2+.........+2^2010]ko chia het cho 7
A chia het cho 2 cho 3 Vì 6 và 18 chia het cho 2va 3
A khong chia het cho 9 vi 2.4.6.8.10 khong chia het cho 9
\(S=1+2+2^2+...+2^{2015}\)
\(\Rightarrow2S=2+2^2+...+2^{2016}\)
\(\Rightarrow2S-S=S=2^{2016}-1\)
\(S+18=2^{2016}+18-1=2^{2016}+17\)
Tự làm , đề sai rroi
a) \(A=2+2^2+....+2^{2019}\)
\(\Rightarrow2A=2^2+2^3+....+2^{2020}\)
\(\Rightarrow2A-A=2^{2020}-2\)
\(\Rightarrow A=2^{2020}-2\)
b) \(A+2=2^{2020}-2+2=2^{2020}=\left(2^{1010}\right)^2\)là SCP
làm nốt lười
\(2a=2^3+2^4+...+2^{2021}.\)
\(\Rightarrow a=2^{2021}-4\Rightarrow a+4=2^{2021}=2.\left(2^{1010}\right)^2\)không là số chính phương
\(A=1+3+....+\left(2n+1\right)=\frac{\left(2n+2\right)\left(n+1\right)}{2}=\left(n+1\right)^2\)
A = 1 + 3 + 5 + 7 + ... + 2n + 1
= \(\left[\left(2n+1-1\right):2+1\right].\left(\frac{2n+1+1}{2}\right)\)
= \(\left(n+1\right).\left(n+1\right)\)
= \(\left(n+1\right)^2\)
=> A là số chính phương (đpcm)
b) \(2+4+6+...+2n\)
= \(\left[\left(2n-2\right):2+1\right].\frac{2n+2}{2}\)
= \(n.\left(n+1\right)\)
= \(n^2+n\)
\(\Rightarrow\)B không là số chính phương
A = 1 + 2 + 22 + .... + 22017
2A = 2(1 + 2 + 22 + .... + 22017 )
= 2 + 22 + 23 + ..... + 22018
2A - A = ( 2 + 22 + 23 + ..... + 22018)- ( 1 + 2 + 22 + .... + 22017 )
A = 22018 - 1
=> A + 1 = 22018 = ( 21009)2 là số chính phương
Do đó A không thể là số chính phương