Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = 1/5^2 + 2/5^3 + 3/5^4 + ... + 10/5^11 + 11/5^12 .
5P = \(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{10}{5^{10}}+\frac{11}{5^{11}}\)
5P - P = ( \(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{10}{5^{10}}+\frac{11}{5^{11}}\)) - ( 1/5^2 + 2/5^3 + 3/5^4 + ... + 10/5^11 + 11/5^12 . )
4P = \(\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\right)-\frac{11}{5^{12}}\)
4P = \(\frac{1-\frac{1}{5^{11}}}{4}-\frac{11}{5^{12}}< \frac{1}{4}\)
\(P< \frac{1}{16}\)
\(A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+....+\frac{10}{5^{10}}+\frac{11}{5^{11}}\)
\(\Rightarrow5A=1+\frac{2}{5}+\frac{3}{5^2}+....+\frac{10}{5^9}+\frac{11}{5^{10}}\)
\(\Rightarrow5A-A=\left(1+\frac{2}{5}+...+\frac{11}{5^{10}}\right)-\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{11}{5^{11}}\right)\)
\(\Rightarrow4A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}-\frac{11}{5^{11}}\)(1)
Đặt \(B=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\)
\(\Rightarrow5B=5+1+\frac{1}{5}+...+\frac{1}{5^9}\)
\(\Rightarrow5B-B=\left(5+1+...+\frac{1}{5^9}\right)-\left(1+\frac{1}{5}+...+\frac{1}{5^{10}}\right)\)
\(\Rightarrow4B=5-\frac{1}{5^{10}}< 5\)
\(\Rightarrow B< \frac{5}{4}\)(2)
Thay (2) vào (1) \(\Rightarrow4A< \frac{5}{4}-\frac{11}{5^{11}}< \frac{5}{4}\)
\(\Rightarrow A< \frac{5}{16}\left(đpcm\right)\)
\(a,A=\dfrac{\dfrac{5}{4}+\dfrac{5}{5}+\dfrac{5}{7}-\dfrac{5}{11}}{\dfrac{10}{4}+\dfrac{10}{5}+\dfrac{10}{7}-\dfrac{10}{11}}\\ =\dfrac{5.\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}{10.\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{11}\right)}\\ =\dfrac{5}{10}\\ =\dfrac{1}{2}\)
Vậy \(A=\dfrac{1}{2}\)
\(b,B=\dfrac{2+\dfrac{6}{5}-\dfrac{6}{7}-\dfrac{6}{11}}{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}\\ =\dfrac{3.\left(\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}\right)}{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}\\ =3\)
Vậy \(B=3\)