K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 1

a.

AB là đường kính nên \(\widehat{AMB}\) là góc nt chắn nửa đường tròn

\(\Rightarrow\widehat{AMB}=90^0\)

\(\Rightarrow M\) và O cùng nhìn BP dưới 1 góc vuông nên tứ giác OBMP nội tiếp

Mà \(PO=PM\Rightarrow\widehat{PBO}=\widehat{PBM}\)

\(\Rightarrow\Delta_VPBO=\Delta_VPBM\left(ch-gn\right)\) (có cạnh huyền PB chung)

\(\Rightarrow BM=OB=R\)

Vậy M nằm ở vị trí sao cho \(BM=R\) thì \(PO=PM\)

Áp dụng Pitago: \(AM=\sqrt{AB^2-BM^2}=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)

\(\Rightarrow S_{ABM}=\dfrac{1}{2}AM.BM=\dfrac{R^2\sqrt{3}}{2}\)

b.

\(MB=MP\Rightarrow\Delta MBP\) vuông cân tại M

\(\Rightarrow\widehat{BPM}=45^0\)

Theo câu a ta có OBMP nội tiếp \(\Rightarrow\widehat{BOM}=\widehat{BPM}=45^0\) (cùng chắn BM)

\(\Rightarrow\widehat{BOM}=\dfrac{1}{2}\widehat{BOC}\) \(\Rightarrow M\) là điểm chính giữa cung BC

Khi đó kẻ \(MH\perp AB\Rightarrow\Delta MOH\) vuông cân tại H (tam giác cân có góc đáy bằng 45 độ)

\(\Rightarrow MH=\dfrac{OM}{\sqrt{2}}=\dfrac{R\sqrt{2}}{2}\)

\(S_{AMB}=\dfrac{1}{2}MH.AB=R^2\sqrt{2}\)

c.

Qua P kẻ đường thẳng song song AB cắt BC tại D

\(\Rightarrow DP\perp CP\Rightarrow\Delta CPD\) nội tiếp đường tròn đường kính CD (1)

\(\widehat{MPD}=\widehat{MAB}\) (đồng vị), mà \(\widehat{MAB}=\widehat{MCB}\) (cùng chắn BM)

\(\Rightarrow\widehat{MPD}=\widehat{MCB}\)

\(\Rightarrow\) Tứ giác MCPD nội tiếp (2 góc bằng nhau cùng chắn MD) (2)

(1);(2) \(\Rightarrow\) M,C,P cùng thuộc đường tròn đường kính CD

Hay tâm I của tam giác CPM nằm trên đường thẳng BC khi M di động trên cung BC

NV
23 tháng 1

loading...

a: Xét (O) có

MA,MB là tiếp tuyến

Do đó: MA=MB

=>ΔMAB cân tại M

b: Xét tứ giác OAMB có

\(\widehat{OAM}+\widehat{OBM}+\widehat{AMB}+\widehat{AOB}=360^0\)

=>\(\widehat{AOB}+60^0+90^0+90^0=360^0\)

=>\(\widehat{AOB}+240^0=360^0\)

=>\(\widehat{AOB}=120^0\)

c: ta có: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB

Bài 1: 

a: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay ΔMAB cân tại M

mà \(\widehat{AMB}=60^0\)

nên ΔMBA đều

b: Xét ΔAOM vuông tại A có 

\(AM=OA\cdot\tan30^0\)

nên \(AM=5\sqrt{3}\left(cm\right)\)

\(C_{AMB}=3\cdot AM=15\sqrt{3}\left(cm\right)\)

c: Ta có: MA=MB

nên M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

hay MO⊥AB(1)

Xét (O) có

ΔABC nội tiếp

AC là đường kính

DO đó: ΔABC vuông tại B

Suy ra: AB⊥BC(2)

Từ (1) và (2) suy ra OM//BC

hay BMOC là hình thang

18 tháng 11 2016

c

Gọi H là giao điểm của AB và OM

a, Xét Δv MAO và ΔvMBO

Có MO chung

AO=OB(=bk)

=> ΔvMAO= ΔMBO (ch-cgv)

=> MA=MB

Trong ΔAMB

Có MA=MB(cmt)

=> ΔAMB cân tại M

lại có góc AMB=60 độ

=> ΔAMB là Δ đều

b, Ta có: góc AMO=góc BMO ( ΔvMAO= ΔvMBO)

mà góc AMO+ góc BMO= góc AMB=60 độ

=> góc AMO=\(\frac{1}{2}.60=30^0\)

Áp dụng tỉ số lượng giác

Ta có : tan góc AMO=\(\frac{AO}{AM}\)

tan30=\(\frac{5}{AM}\)

=>AM=\(\frac{5}{tan30}=5\sqrt{3}\)

Chu vi ΔAMB= AM.3=\(5\sqrt{3}.3=15\sqrt{3}\)

c, Ta có OA=OB (=bk)

=> O thuộc đường trung trực AB(1)

MA=MB(cmt)

=> M thuộc đường trung trực AB (2)

Từ (1)(2)=> OM là cả đường trung trực

=> MO vuông góc AB (*)

Ta có: OA=OB=OC(=bk)

=> OB=\(\frac{1}{2}AC\)

mà OB là đường trung tuyến

=> Δ ABC vuông tại B

=> AB vuông góc BC(**)

Từ (*)(**)=> MO//BC

=> BMOC là hình thang

18 tháng 11 2016

Bài 2:

a,

Ta có : góc AQM=90 độ ( MQ vuông góc xy)

góc APM =90 độ ( MP vuông góc AB)

góc QAP=90độ ( xy vuông góc OA)

=> QMPA là hình chữ nhật

b, Trong hình chữ nhật QMPA:

Có : I là trung điểm của đường chéo thứ nhất QP

-> I cũng là trung điểm của đường chéo thứ 2 AM

=> IA=IM

=> OI vuông góc AM tại I ( đường kính đi qua trung điểm => vuông góc ( đ/Lý 3)

10 tháng 8 2021

a, thay \(x=1,y=2\) vào (d) (\(m\ne\dfrac{2}{3}\))

\(=>\left(3m-2\right).1+m-1=2< =>m=1,25\left(tm\right)\)

b, (d) tạo với Ox 1 góc tù \(< =>3m-2< 0< =>m< \dfrac{2}{3}\)

c,\(=>x=y=0\)

\(=>m-1=0< =>m=1\)

11 tháng 8 2021

câu a có thể giải kĩ ra cho mình với đc không ạ

7 tháng 5 2020

Gọi  \(AE\) là đường cao của  \(\Delta ABC\)và  CD∩AE=F

\(\Delta CBH\) có E,M lần lượt là trung điểm \(CB,CH\)

\(\Rightarrow EM//BH\)

\(\Rightarrow EM\perp DC\)

Áp dụng định lí Menelaus cho tam giác ABE với cát tuyến CFD ta được: 

\(\frac{AD}{BD}.\frac{BC}{EC}.\frac{EF}{AF}=1\)

\(\Leftrightarrow FA=FE\)

\(\Delta CEF\)vuông tại \(E\) có đường cao \(EM\)

\(\Rightarrow\hept{\begin{cases}\widehat{MFE}=\widehat{MEC}\Rightarrow\widehat{MFA}=\widehat{MEB}\\\frac{ME}{MF}=\frac{EC}{EF}=\frac{EB}{FA}\end{cases}}\)

\(\Delta MEB\)và \(\Delta MFA\)có:

\(\hept{\begin{cases}\widehat{MFA}=\widehat{MEB\left(cmt\right)}\\\frac{ME}{MF}=\frac{EB}{FA}\left(cmt\right)\end{cases}}\)

\(\Rightarrow\Delta MEB\)đồng dạng \(\Delta MFA\)

\(\Rightarrow\widehat{FMA}=\widehat{EMA}\)

\(\widehat{AMB}=\widehat{DMB}+\widehat{AMF}=\widehat{DMB}+\widehat{BME}=90^0\)

\(\Rightarrow MB\perp MA\)

hay \(\widehat{ANB}=90^0\left(ĐPCM\right)\)