Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(p\) là số nguyên tố lẻ nên p có thể có dạng \(5k+1\)
Khi đó:\(p^2+2014=\left(5k+1\right)^2+2014=25k^2+10k+2015⋮5\) và \(p^2+2014>5\)
Do đó p2 + 2014 là hợp số. Vậy p2 + 2014 là hợp số
theo đề bài ta có:
2011 số 2 =2011.2=4022
2011 số 7 =2011.7=14077
=> tổng các chữ số là 2222...20000...00.777...7=4022+14077=18099
vì 18099 chia hết cho 9 mà C>9
=>C là hợp số
duyệt nhé
1.
$2xy+x-14y=21$
$\Rightarrow x(2y+1)-7(2y+1)=14$
$\Rightarrow (x-7)(2y+1)=14$
Với $x,y$ nguyên thì $x-7, 2y+1$ cũng là số nguyên. Mà $(x-7)(2y+1)=14$ nên $2y+1$ là ước của 14
Mà $2y+1$ lẻ nên $2y+1\in \left\{\pm 1; \pm 7\right\}$
Nếu $2y+1=1\Rightarrow x-7=14$
$\Rightarrow y=0; x=21$
Nếu $2y+1=-1\Rightarrow x-7=-14$
$\Rightarrow y=-1; x=-7$
Nếu $2y+1=7\Rightarrow x-7=2$
$\Rightarrow y=3; x=9$
Nếu $2y+1=-7\Rightarrow x-7=-2$
$\Rightarrow y=-4; x=-5$
Bài 2:
\(A=\underbrace{111...1}_{2014}=10^{2013}+10^{2012}+...+10+1\)
\(=(1+10)+(10^2+10^3)+(10^4+10^5)+...+(10^{2012}+10^{2013})\\ =(1+10)+10^2(1+10)+10^4(1+10)+....+10^{2012}(1+10)\\ =(1+10)(1+10^2+10^4+...+10^{2012})\ =11(1+10^2+10^4+...+1)^{2012})\)
$\Rightarrow A$ là hợp số.
hợp số vì chia hết cho 3