K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2015

Đặt A : \(\frac{1}{2}\times\frac{3}{4}\times.....\times\frac{2499}{2500}\)

Ta có công thức :\(\frac{m}{n}

13 tháng 8 2015

A=\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{2499}{2500}\)

B=\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}....\frac{2500}{2501}\)

A.B=\(\frac{1.2.3.4.5....2499.2500}{2.3.4.5.6......2499.2500.2501}=\frac{1}{2501}\)

so sanh A.A va A.B

ta cm duoc \(\frac{1}{2}

21 tháng 4

ko ai trả lời thì để mình

C/M : n/n+1 < n+1/n+2

1 - n/n+1 = 1/n+1

1 - n/n + 2 = 1/n+2

Vì 1/n+1 > 1/n+2 nên n/n+1 < n+1/n+2

1/2 . 3/4 . 5/6 ... 2499/2500 < 1/2 . 2/3 . 3/4 ... 2501/2502

=1/2501 < 1/2500 (1/50) 2

1/50 < 1/49 => A <1/49

 

NV
16 tháng 5 2021

\(\dfrac{n^2-1}{n^2}=1-\dfrac{1}{n^2}>1-\dfrac{1}{\left(n-1\right)n}\)

Từ đó ta có:

\(A=\dfrac{2^2-1}{2^2}+\dfrac{3^2-1}{3^2}+...+\dfrac{50^2-1}{50^2}>1-\dfrac{1}{1.2}+1-\dfrac{1}{2.3}+...+1-\dfrac{1}{49.50}\)

\(\Rightarrow A>49-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)\)

\(\Rightarrow A>49-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

\(\Rightarrow A>49-\left(1-\dfrac{1}{50}\right)=48+\dfrac{1}{50}>48\)

16 tháng 5 2021

\(A=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}\\ A=\left(1+1+1+...+1\right)-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}\right)\\ A=49-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}\right)\)

Có \(\dfrac{1}{4}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\\ \dfrac{1}{9}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\\ \dfrac{1}{16}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\\ ...\\ \dfrac{1}{2500}=\dfrac{1}{50.50}< \dfrac{1}{49.50}\)

\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\\ \Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}< 1-\dfrac{1}{50}< 1\\ \Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}< 1\)

\(\Rightarrow A=49-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}\right)>49-1\\ \Rightarrow A>48\)

14 tháng 5 2015

\(A=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+\frac{1}{2500}\)

\(A=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+\frac{1}{50^2}=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)\)(từ 2 đến 50 có 49 số nên có 49 số 1)

\(A=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)

22 tháng 1 2018

phải la 1- 1/2500

11 tháng 3 2016

(1-1/4)+(1-1/90)+(1-1/16)+...+(1-1/2500)

=(1+1+1+...+1)-(1/4+1/9+1/16+...+1/2500)<Cái ngoặc thứ 2 coi là A, ngoặc thứ 1 coi là B>

Ta có A= 1/2.2+1/3.3+1/4.4+...+1/50.50

=>A<1/1.2+1/2.3+...+1/49.50=1-1/50=49/50<1

=>A<1

B có 49 số 1 <(50-2/1+1=49> vậy B=49

B-A mà B=49, A<1 vậy 48<D<49 vậy D < 49

11 tháng 3 2016

Ban ơi ! Mình chứng minh D>48 chứ không chứng minh D<48 

Nhưng cảm ơn bạn nhờ bài bạn mà mình có thể suy luận ra kết quả rồi 

Thank you !!!!!!!! :)