K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2019

Thật vậy   1/22  <  1/1.2

                 1/23  <  1/2.3

              ........................

             1/20122  <  1/2011.2012

             1/20132  <  1/2012.2013

                                                       

1/22 + 1/22 + .....+1/20122 + 1/20132 < 1/1.2+1/2.3+ .... +1/2011.2012 + 1/2012.2013  (1)

Mà  1/1.2+1/2.3+ .... +1/2011.2012 + 1/2012.2013

    = 1 - 1/2 + 1/2 - 1/3 + .....+ 1/2011 - 1/2012 + 1/2012 - 1/2013

    = 1 - 1/2013

    = 2012/2013 < 1    (2)

Từ (1) và (2) => A<1

22 tháng 10 2023

a) P = 1 + 3 + 3² + ... + 3¹⁰¹

= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)

= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)

= 13 + 3³.13 + ... + 3⁹⁹.13

= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13

Vậy P ⋮ 13

b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰

= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)

= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)

= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21

= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21

Vậy B ⋮ 21

c) A = 2 + 2² + 2³ + ... + 2²⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + ... + 2¹⁶.30

= 30.(1 + 2⁴ + ... + 2¹⁶)

= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5

Vậy A ⋮ 5

d) A = 1 + 4 + 4² + ... + 4⁹⁸

= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)

= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)

= 21 + 4³.21 + ... + 4⁹⁷.21

= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21

Vậy A ⋮ 21

e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1

= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)

= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105

= 11⁵.16105 + 16105

= 16105.(11⁵ + 1)

= 5.3221.(11⁵ + 1) ⋮ 5

Vậy A ⋮ 5

31 tháng 3 2021

Ta có 1/2.2<1/1.2

         1/3.3<1/2.3

         1/4.4<1/3.4

  .........................

         1/20.20<1/19.20

=>1/2.2+1/3.3+1/4.4+...+1/20.20<1/1.2+1/2.3+1/3.4+...+1/19.20

=>A<1/1-1/2+1/2-1/3+1/3-1/4+...+1/19-1/20

=>A<1/1-1/20

=>A<20/20-1/20

=>A<19/20<20/20=1

=>A<1

 Vậy A<1

1 tháng 9 2023

a) \(A=1+2+2^2+...+2^{80}\)

\(2A=2+2^2+2^3+...+2^{81}\)

\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)

\(A=2^{81}-1\)

Nên A + 1 là:

\(A+1=2^{81}-1+1=2^{81}\)

b) \(B=1+3+3^2+...+3^{99}\)

\(3B=3+3^2+3^3+...+3^{100}\)

\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)

\(2B=3^{100}-1\)

Nên 2B + 1 là:

\(2B+1=3^{100}-1+1=3^{100}\)

1 tháng 9 2023

2) 

a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)

Gọi:

\(A=1+2+2^2+...+2^{2015}\)

\(2A=2+2^2+2^3+...+2^{2016}\)

\(A=2^{2016}-1\)

Ta có:

\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)

\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)

\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)

\(\Rightarrow2^x=2^0\)

\(\Rightarrow x=0\)

b) \(8^x-1=1+2+2^2+...+2^{2015}\)

Gọi: \(B=1+2+2^2+...+2^{2015}\)

\(2B=2+2^2+2^3+...+2^{2016}\)

\(B=2^{2016}-1\)

Ta có:

\(8^x-1=2^{2016}-1\)

\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)

\(\Rightarrow2^{3x}-1=2^{2016}-1\)

\(\Rightarrow2^{3x}=2^{2016}\)

\(\Rightarrow3x=2016\)

\(\Rightarrow x=\dfrac{2016}{3}\)

\(\Rightarrow x=672\)

28 tháng 4 2022

Đặt A=11⋅2+12⋅3+...+17⋅8A=11⋅2+12⋅3+...+17⋅8

Dễ thấy: B=122+132+...+182B=122+132+...+182<A=11⋅2+12⋅3+...+17⋅8(1)<A=11⋅2+12⋅3+...+17⋅8(1)

Ta có:A=11⋅2+12⋅3+...+17⋅8A=11⋅2+12⋅3+...+17⋅8

=1−12+12−13+...+17−18=1−12+12−13+...+17−18

=1−18<1(2)=1−18<1(2)

Từ (1);(2)(1);(2) ta có: B<A<1⇒B<1

16 tháng 11 2021

\(1,Y=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\\ Y=\left(1+3+3^2\right)\left(1+3^3+...+3^{96}\right)\\ Y=13\left(1+3^3+...+3^{96}\right)⋮13\\ 2,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2018}+3^{2019}\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{2019}\right)\\ A=4\left(1+3^2+...+3^{2019}\right)⋮4\\ 3,\Leftrightarrow2\left(x+4\right)=60\Leftrightarrow x+4=30\Leftrightarrow x=36\)

16 tháng 11 2021

Giúp mình cả bài 4,5 ở dưới được ko?

a)\(\dfrac{1}{2^2}<\dfrac{1}{1.2}\)

\(\dfrac{1}{3^3}<\dfrac{1}{2.3}\)

\(...\)

\(\dfrac{1}{8^2}<\dfrac{1}{7.8}\)

Vậy ta có biểu thức:

\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}<\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)

\(B= 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)

\(B<1-\dfrac{1}{8}=\dfrac{7}{8}<1\)

Vậy B < 1 (đpcm)

 

 

 

Giải:

a) Ta có:

1/22=1/2.2 < 1/1.2

1/32=1/3.3 < 1/2.3

1/42=1/4.4 < 1/3.4

1/52=1/5.5 < 1/4.5

1/62=1/6.6 < 1/5.6

1/72=1/7.7 < 1/6.7

1/82=1/8.8 <1/7.8

⇒B<1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8

   B<1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8

   B<1/1-1/8

   B<7/8

mà 7/8<1

⇒B<7/8<1

⇒B<1

b)S=3/1.4+3/4.7+3/7.10+...+3/40.43+3/43.46

   S=1/1-1/4+1/4-1/7+1/7-1/10+...+1/40-1/43+1/43-1/46

   S=1/1-1/46

   S=45/46

Vì 45/46<1 nên S<1

Vậy S<1

Chúc bạn học tốt!

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Lời giải:
a. Ta thấy:

$3+3^2+3^3+...+3^{99}\vdots 3$

$1\not\vdots 3$

$\Rightarrow A=1+3+3^2+...+3^{99}\not\vdots 3$

$\Rightarrow A\not\vdots 9$

b.

$A=(5+5^2)+(5^3+5^4)+...+(5^{39}+5^{40})$

$=5(1+5)+5^3(1+5)+...+5^{39}(1+5)$

$=5.6+5^3.6+....+5^{39}.6$

$=6(5+5^3+...+5^{39})$

$=2.3.(5+5^3+...+5^{39})$

$\Rightarrow A\vdots 2$ và $A\vdots 3$

* Ta có : 1/21 >1/30 ;1/22 >1/30 ;...;1/29 >1/30 

=> 1/21 +1/22 +...+1/29 +1/30 >1/30 +1/30 +...+1/30 =10/30 =1/3    (1)

1/31 >1/40 ;1/32 >1/40 ;...;1/39 >1/40 

=> 1/31 +1/32 +...+1/39 +1/30 >1/40 +1/40 +...+1/40 =10/40 =1/4    (2)

Từ (1) và (2) 

=> 1/21 +1/22 +...+1/30 +1/31 +1/32 +...+1/40 >1/3 +1/4 

=> 1/21 +1/22 +1/23 +...+1/40 >7/12   (*)

* Ta có : 1/21 <1/20 ;1/22 <1/20 ;...;1/30 <1/20 

=> 1/21 +1/22 +...+1/29 +1/30 <1/20 +1/20 +...+1/20 =10/20 =1/2   (3)

1/31 <1/30 ;1/32 <1/30 ;...;1/40 <1/30 

=> 1/31 +1/32 +...+1/39 +1/40 <1/30 +1/30 +...+1/30 =10/30 =1/3   (4)

Từ (3) và (4) 

=> 1/21 +1/22 +...+1/30 +1/31 +1/32 +...+1/40 <1/2 +1/3 

=> 1/21 +1/22 +1/23+...+1/40 <5/6     (**)

Từ (*) và (**) ta có : 7/12 <1/21 +1/22 +1/23 +...+1/40 <5/6   (đpcm)

9 tháng 5 2019

Bài hơi dài , thông cảm

Ta có : \(\frac{1}{21}>\frac{1}{30};\frac{1}{22}>\frac{1}{30};\frac{1}{23}>\frac{1}{30};...;\frac{1}{29}>\frac{1}{30}\)

\(\Rightarrow A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\)

\(>\frac{10}{30}=\frac{1}{3}(1)\)

Ta có  : \(\frac{1}{31}>\frac{1}{40},\frac{1}{32}>\frac{1}{40},...,\frac{1}{39}>\frac{1}{40}\)

\(\Rightarrow A=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\)

\(>\frac{10}{40}=\frac{1}{4}(2)\)

Từ 1 và 2 \(\Rightarrow A>\frac{1}{3}+\frac{1}{4}\Rightarrow A>\frac{7}{12}\)

Ta có : \(\frac{1}{21}< \frac{1}{20};\frac{1}{22}< \frac{1}{20};...;\frac{1}{30}< \frac{1}{20}\)

\(\Rightarrow A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}< \frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)

\(< \frac{10}{20}=\frac{1}{2}(3)\)

Ta lại có : ....

Làm tiếp đi :v