Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2A=2+2^2+2^3+...+2^{100}\\ \Rightarrow2A-A=2+2^2+...+2^{100}-1-2-...-2^{99}\\ \Rightarrow A=2^{100}-1\\ b,A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{98}\left(1+2\right)\\ A=\left(1+2\right)\left(1+2^2+...+2^{98}\right)=3\left(1+2^2+...+2^{98}\right)⋮3\\ c,A=\left(1+2+2^2+2^3\right)+...+2^{96}\left(1+2+2^2+2^3\right)\\ A=\left(1+2+2^2+2^3\right)\left(1+...+2^{96}\right)=15\left(1+...+2^{96}\right)⋮15\)
Ta có: A = 2 + 22 + 23 + 24 + ... + 299 + 2100
A = (2 + 22) + (23 + 24) + ... + (299 + 2100)
A = 6 + 22(2 + 22) + .... + 298(2 + 22)
A = 6 + 22.6 + ... + 298.6
A = 6.(1 + 22 + ... + 298) \(⋮\)6
A = 21 + 22 + 23 + ................ + 2120
Chứng minh chia hết cho 7
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)
A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)
A = 2.7 + 24 . 7 + ................ + 2118.7
A = 7.(2 + 24 + ........... + 2118)
Chứng minh chia hết cho 31
A = 21 + 22 + 23 + ................ + 2120
A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)
A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)
A = 2.31 + 26.31 + ....... + 2116 . 31
A = 31.(2 + 26 + ........... + 2116)
chia hết cho 3
A=(2 mũ 2+2 mũ 3)+(2 MŨ 4+2 mũ 5)+...+(2 mũ 19+2 mũ 20)
A=(2 mũ 2 +2 mũ 3)+2 mũ 2.(2 mũ 2+2 mũ 3)+...+2 mũ 17.(2 mũ 2+2 mũ 3)
A=12+2 mũ 2.12+...+2 mũ 17.12
A=12.(1+2 mũ 2+...+2 mũ 17)
vậy A chia hết cho 3
chia hết cho7
A=(2 mũ 2+2 mũ 3 +2 mũ 4).....(2 mũ 18+2 mũ 19 +2 mũ 20)
A=(2 mũ 2 +2 mũ 3 +2 mũ 4).....2 mũ 16.(2 mũ 2+2 mũ 3+2 mũ 4)
A=28.....2 mũ 16.28
28.(1+...+2 mũ 16)
vậy a .....cho 7
chia hất cho 15
A=(2 mũ 2+2 mũ 3+2 mũ 4+2 mũ 5).....(2 mũ 17+2 mũ 18+2 mũ 19+2 mũ 20)
A=(2 mũ 2+2 mũ 3+2 mũ 4+2 mũ 5).....2 mũ 15.(2 mũ 2+2 mũ 3+2 mũ 4+2 mũ 5)
A=60.....2 mũ 15.60
A=60.(1+...+2 mũ 15)
vậy a........cho 15.
CHÚC BẠN HOK TỐT!
Sửa đề: \(A=2^0+2^1+2^2+...+2^{99}\)
\(=\left(2^0+2^1\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)
\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{98}\left(1+2\right)\)
\(=3\left(1+2^2+...+2^{98}\right)⋮3\)
A = (3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+.....+(3^97+3^98+3^99+3^100)
= 120+3^4.(3+3^2+3^3+3^4)+.....+3^96.(3+3^2+3^3+3^4)
= 120+3^4.110+....+3^96.120
= 120.(1+3^4+.....+3^96) chia hết cho 120
=> ĐPCM
Tk mk nha
ta co A=(31+32+33+34)+...+(397+398+399+3100)
tớ gợi ý nhiêu đây thôi
a, 942^60-351^37
=(942^4)^15-351^37
=(....6)^15 -351^37
suy ra( 942^4)^15 có tận cùng là 6
357^37 có tận cùng là 1
hiệu của 942^60-351^37 có tận cùng là 5
suy ra 942^60-351^37 chia hết cho 5
a) Ta có: 942^60=(942^4)^15=...6^15=...6
351^37=...1
Suy ra: 942^60-351^37=...5 chia hết cho 5. Vậy 942^60-351^37 chia hết cho 5
b) Làm tương tự câu trên
Theo bài ra ta có :
A = 1 + 2 + 22 + 23 + ... + 299 = (1 + 22) + (2 + 23) + ... + (297 + 299)
= (1 + 22) + 2(1 + 22) + ... + 297(1 + 22) = 5 + 2 . 5 + ... + 297 . 5
= 5(1 + 2 + ... + 297)\(⋮\)5
=> A\(⋮\)5