K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2018

Ta có::

2016 có dạng 4k

Ta xét 10 số đầu

12016+22016+32016+42016+52016+62016+72016+82016+92016+102016=(....1)+(....6)+(...1)+(....6)+(....5)+(....6)+(....1)+(.....6)+(....1)+(....0)

=(....3)

Các nhóm sau cũng có tận cùng như vậy:

Ta chia A thành: 201 nhóm như sau:

(12016+22016+32016+42016+52016+62016+72016+82016+92016+102016)+(112016+122016+132016+142016+152016+162016+172016+182016+192016+202016)+.....+20112016+20122016+20132016+20142016+20152016+20162016=(....3)201+(...1)+(...6)+(....1)+(....6)+(...5)+(...6)

=(.....3)+(.....8)+(....1)+(....6)=(....8)

có chữ số tận cùng là 8 nên ko là số chính phương (ĐPCM)

Vậy A ko là số chính phương

25 tháng 12 2018

Lam Giang -6C

29 tháng 7 2016

a) 7 chia hết cho 7

    7^2 chia hết cho 7

   7^3 chia hết cho 7

.....

7^1000 chia hết cho 7

\(\Rightarrow\)A chia hết cho 7(1)

7 không chia hết cho 7^2

7^2 chia hết cho 7^2

7^3 chia hết cho 7^2

..

7^1000 chia hết cho 7^2

\(\Rightarrow\)A không chia hết cho 7^2(2)

Từ (1) và (2)\(\Rightarrow\)A không phải là số chính phương

b) Ta thấy: 20^2016 có tận cùng là0

11^2017 có tận cùng là 1

2016^2018 có tận cùng là 6

\(\Rightarrow\)B có tận cùng là 7

\(\Rightarrow\)B không phải là số chính phương

 

 

29 tháng 7 2016

Ta có : \(A=7+7^2+7^3+7^4+...+7^{100}\)

\(A=7+7.7+7^2.7+7^3.7+...+7^{99}.7\)

\(A=7\left(1+7+7^2+7^3+...+7^{99}\right)\)

Vì : \(7⋮7\Rightarrow7\left(1+7+7^2+7^3+...+7^{99}\right)⋮7\)

Tức là  \(A\) là số chính phương

10 tháng 12 2016

a, - { -(2016 +2015) - [ - (2016 - 2015) - (2016+2015) ] }

= -{-(2016+2015)-[-0-0]}

= -{-4031-0-0}

=-4031

22 tháng 12 2019

giả sử 2015^2016+2016^2017+2017^2018+2018^2019 là số chính phương

mà 2015^2016+2016^2017+2017^2018+2018^2019 là số chẵn=>2015^2016+2016^2017+2017^2018+2018^2019chia hết cho 4

ta có 2015^2016 ≡ (-1)^2016 (mod 4);   2016^2017 chia hết cho 4;   2017^2018 ≡ 1^2018 (mod 4);   2018^2019 ≡ 2^2019

=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ (-1)^2016+1^2018+2^2019 (mod 4)

<=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 1+1+2^2019(mod 4)

ta có 2^2019=4x2^2017 chia hết cho 4

=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 2 (mod 4) vô lí 

=> điều giả sử sai

=>ĐPCM