K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2020

+ Đặt \(k=111...1\) ( 2010 chữ số 1 ) \(\Rightarrow10^{2010}=9k+1\)

+ Ta có : \(ab+1=111...1\cdot\left(1000...0+5\right)+1=k\left(10^{2010}+5\right)+1\)

(2010 cs 1) (2010 cs 0)

\(\Rightarrow ab+1=k\left(9k+1+5\right)+1=9k^2+6k+1=\left(3k+1\right)^2\)

\(\Rightarrow\sqrt{ab+1}=3k+1\) là số tự nhiên

9 tháng 7 2017

Để \(\sqrt{AB+1}\in N\) thì AB+1 phải là số chính phương

Đặt 2008 = n 

Ta có A = 11..1= \(\frac{10^n-1}{9}\)

         B = 100..05 =10..00(2008 chữ số 0) +5 = 10n+5

\(\Rightarrow AB+1=\frac{10^n-1}{9}.\left(10^n+5\right)+1\)

                      \(=\frac{\left(10^n-1\right)\left(10^n+5\right)+9}{9}=\frac{10^{2n}+5.10^n-10^n-5+9}{9}\)

                        \(=\frac{10^{2n}+4.10^n+4}{9}=\frac{\left(10^n+2\right)^2}{9}=\left(\frac{10^n+2}{3}\right)^2\)  

      Mà 10n+2 có tổng các chữ số bằng 3 nên chia hết cho 3 

  Suy ra AB+1 là số chính phương 

\(\Rightarrow\sqrt{AB+1}\)LÀ SỐ TỰ NHIÊN

9 tháng 7 2017

ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]

 

Bài 1: 

Ta có: \(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(a+c\ge2\sqrt{ac}\)

Do đó: \(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)

hay \(a+b+c\ge\sqrt{ab}+\sqrt{cb}+\sqrt{ac}\)

28 tháng 7 2017

a/ \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)

\(\Leftrightarrow a+b=a+c+b+c+2\sqrt{ab+ac+bc+c^2}\)

\(\Leftrightarrow-c=\sqrt{ab+ac+bc+c^2}\)

\(\Leftrightarrow c^2=ab+ac+bc+c^2\)

\(\Leftrightarrow ab+ac+bc=0\)

\(\Leftrightarrow ab=-c\left(a+b\right)\)

\(\Leftrightarrow\frac{ab}{a+b}=-c\)

\(\Leftrightarrow\frac{a+b}{ab}=-\frac{1}{c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)(đúng)

8 tháng 10 2020

Câu 1 mình ấn nhầm

giúp mình câu 2 thôi. Thank you

16 tháng 7 2016

b) Đặt x = 2009 . Ta cần chứng minh \(\sqrt{x^2+x^2\left(x+1\right)^2+\left(x+1\right)^2}\) là số nguyên dương.

Ta xét : \(x^2+x^2\left(x+1\right)^2+\left(x+1\right)^2=x^2\left(x+1\right)^2+x^2+x^2+2x+1=x^2\left(x+1\right)^2+2x\left(x+1\right)+1=\left[x\left(x+1\right)+1\right]^2\)

\(\Rightarrow\sqrt{x^2+x^2\left(x+1\right)^2+\left(x+1\right)^2}=\left|x\left(x+1\right)+1\right|=x^2+x+1=2009^2+2009+1\) là một số nguyên dương.

7 tháng 7 2019

a) \(ab+bc+ca=1\)\(\Rightarrow\)\(\hept{\begin{cases}a^2b^2+b^2c^2+c^2a^2=1-2abc\left(a+b+c\right)\\\left(a+b+c\right)^2-2=a^2+b^2+c^2\end{cases}}\)

\(A=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\sqrt{a^2b^2c^2+a^2b^2+b^2c^2+c^2a^2+a^2+b^2+c^2+1}\)

\(A=\sqrt{a^2b^2c^2-2abc\left(a+b+c\right)+\left(a+b+c\right)^2}\)

\(A=\sqrt{\left(abc-a-b-c\right)^2}=\left|abc-a-b-c\right|\)

Do a, b, c là các số hữu tỉ nên \(\left|abc-a-b-c\right|\) là số hữu tỉ 

b) \(B=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}>\sqrt{1+\sqrt{1+\sqrt{1+...+\sqrt{1}}}}=1\)

\(B< \sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2+2}}}}=\sqrt{2+2}=2\)

=> \(1< B< 2\) B không là số tự nhiên 

c) câu này có ng làm r ib mk gửi link 

7 tháng 7 2019

à chỗ câu b) mình nhầm tí nhé 

\(B=\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{2}}}}>\sqrt{1+\sqrt{1+\sqrt{1+...+\sqrt{1}}}}>1\)

Sửa dấu "=" thành ">" hộ mình 

26 tháng 10 2019

đặt \(2008=a\)

\(\sqrt{1+a^2+\frac{a^2}{\left(a+1\right)^2}}=\sqrt{\left(a+1\right)^2-\frac{2\left(a+1\right).a}{a+1}+\left(\frac{a}{a+1}\right)^2}=\)\(\sqrt{\left(a+1-\frac{a}{a+1}\right)^2}=a+1-\frac{a}{a+1}\)=2008+1- \(\frac{2008}{2009}\)

=> A= 2008+1 = 2009