Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính biểu thức 1/1+1/2+1/3+...+1/98 bằng cách ghép thành từng cặp các phân số cách đều 2 phân số đầu và cuối
ta được :
( 1/1+1/98)+( 1/2+1/97 ) + ...+ ( 1/49+1/50 )
= 99/1.98+99/2.97+...+99/49.50
gọi các thừa số phụ là k1, k2, k3, ..., k49 thì
A = 99.(k1+k2+k3+...+k49)/99.(k1+k2+...+k49) x 2.3.4....97.98
= 99.(k1+k2+...+k49)
=> A chia hết cho 49 (1)
b)
Cộng 96 p/s theo từng cặp :
a/b = ( 1/1+1/96)+(1/2+1/95)+(1/3+1/94)+...+(1/48+1/49)
.................................................. ( làm tiếp nhé )
mỏi woa
Ta thấy
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)2.3.4....98\)
\(A=2.3.4...98+3.4.5....98+2.4.5....98+...+2.3.4....97\)(phá ngoặc)
=> A là số dương
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)2.3.4....98\)
Trong 2.3.4.....98 có 11.9 = 99 nên A chia hết cho 99
b) Khi quy đồng mẫu lên tính B thì b là tích từ 2 đến 96(mẫu số chung)
Ta sẽ có:
B = \(\frac{a}{2.3.....96}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{96}\)
=>\(a=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{96}\right)2.3.4....96\)
Bạn CMTT như câu a là cũng ra
Chúc bạn học tốt
Ta có: \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\)
\(=\left(1+\frac{1}{98}\right)+\left(\frac{1}{2}+\frac{1}{97}\right)+\left(\frac{1}{3}+\frac{1}{96}\right)+...+\left(\frac{1}{49}+\frac{1}{50}\right)\)
\(=\frac{99}{1.98}+\frac{99}{2.97}+\frac{99}{3.96}+...+\frac{99}{49.50}\)
\(=99\left(\frac{1}{1.98}+\frac{1}{2.97}+\frac{1}{3.96}+...+\frac{1}{49.50}\right)\)
\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right).2.3.4....98\)
\(=99\left(\frac{1}{1.98}+\frac{1}{2.97}+\frac{1}{3.96}+...+\frac{1}{49.50}\right).2.3.4....98\)chia hết cho 99 (đpcm)
Tính một lúc ta được M=1+2+3+...+98
\(M=\left(1+98\right)+\left(2+97\right)+...\left(49+50\right)\)
\(M=99+99+99+...+99\)
Vậy M chia hết cho 99
Ai tích mk mk tích lại cho
Tìm 2M rồi trừ cho M sẽ ra kết quả
Mình giải cho đợi tí
\(\frac{1}{2}+\frac{1}{2}+...+\frac{1}{97}+\frac{1}{98}=\left(\frac{1}{1}+\frac{1}{98}\right)+\left(\frac{1}{2}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{50}\right)\)( có 98 phân số => có 8 cặp )
\(=\frac{99}{1.98}+\frac{99}{2.97}+...+\frac{99}{49.50}=99.\left(\frac{1}{1.98}+\frac{1}{2.97}+...+\frac{1}{49.50}\right)\)
\(\Rightarrow A=\left(\frac{1}{1.98}+\frac{1}{2.97}+...+\frac{1}{49.50}\right).1.2.3....98.99\)
\(\)A chia hết cho 99.
Ta có : M= [(1+1/98)+(1/2+1/97)+...+(1/49+1/50)].2.3.4...98
M=(99/1.98+99/2.97+...+99/49.50).2.3.4...98
M=99(1/1.98+1/2.97+...+1/49.50).2.3.4...98
M=99(k1+k2+...+k49/1.2.3.4...97.98).2.3.4...98
M=99(k1+k2+...+k49)
Vậy M chia hết cho 99
bạn vào goole mà tra đảm bảo sẽ ra kết quả và cách làm