Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}=\frac{1+5\left(1 +5+5^2+...+5^8\right)}{1+5+5^2+...+5^8}=5+\frac{1}{1+5+5^2+...+5^8} \)
\(B=\frac{1+3+3^2+....+3^9}{1+3+3^2+....+3^8}=\frac{1+3\left(1+3+3^2+....+3^8\right)}{1+3+3^2+....+3^8}=3+\frac{1}{1+3+3^2+....+3^8}\)
\(=5+\frac{1}{1+3+3^2+....+3^8}-2\)
Có: \(\frac{1}{1+5+5^2+...+5^8}>0\) và \(\frac{1}{1+3+3^2+....+3^8}-2< 0\)
\(\Rightarrow A>B\)
A = 387420490 ; B = 1000000001
vậy B lớn hơn A
Bài 1: A=108 +2/108 -1=108 -1+3/108 -1=108 -1/108-1 +3/108 -1=1+3/108 -1
B=108 /108 -3=108 -3+3/108 -3=108 -3/108 -3 +3/108 -3=1+3/108 -3
Vì 108 -1>108 -3=>3/108 -1<108 -3=>1+3/108 -1<1+3/108 -3=>A<B
Ta có:
\(A=\dfrac{2010^{2011}+1}{2010^{2012}+1}\)
\(A< \dfrac{2010^{2011}+1+2009}{2010^{2012}+1+2009}\)
\(A< \dfrac{2010^{2011}+2010}{2010^{2012}+2010}\)
\(A< \dfrac{2010\left(2010^{2010}+1\right)}{2010\left(2010^{2011}+1\right)}\)
\(A< \dfrac{2010^{2010}+1}{2010^{2011}+1}\)
Mà \(B=\dfrac{2010^{2010}+1}{2010^{2011}+1}\)
\(\Rightarrow A< B\)
các bạn giúp mình với nhanh lên nhé.Mình sẽ cho
A>B
BẠN Ạ