Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(M=\dfrac{1}{x+1}+\dfrac{3x-2}{\left(x+1\right)\left(x^2-1\right)}\)
\(=\dfrac{x^2-1+3x-2}{\left(x+1\right)\left(x^2-1\right)}=\dfrac{x^2+3x-3}{\left(x+1\right)\left(x^2-1\right)}\)
b: |2x+1|=5
=>2x+1=5 hoặc 2x+1=-5
=>2x=4 hoặc 2x=-6
=>x=2(nhận) hoặc x=-3(nhận)
Khi x=2 thì \(M=\dfrac{4+6-3}{\left(2+1\right)\left(2^2-1\right)}=\dfrac{7}{3\cdot3}=\dfrac{7}{9}\)
Khi x=-3 thì \(M=\dfrac{9-9-3}{\left(-3+1\right)\left(9-1\right)}=\dfrac{-3}{\left(-2\right)\cdot8}=\dfrac{3}{16}\)
Bài 1:
a) \(\left(2+x\right)\left(x^2-2x+4\right)-\left(3+x^2\right)x=14\) (1)
\(\Leftrightarrow2x^2-4x+8+x^3-2x^2+4x+\left(-3-x^2\right)x=14\)
\(\Leftrightarrow8+x^3-3x-x^3=17\)
\(\Leftrightarrow8-3x=14\)
\(\Leftrightarrow-3x=14-8\)
\(\Leftrightarrow-3x=6\)
\(\Leftrightarrow x=-2\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{-2\right\}\)
b) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\) (2)
\(\Leftrightarrow21x-15x^2-35+25x-\left(10x-15x^2+4-6x\right)=4\)
\(\Leftrightarrow21x-15x^2-35+25x-\left(4x-15x^2+4\right)=4\)
\(\Leftrightarrow21x-15x^2-35+25x-4x+15x^2-4=4\)
\(\Leftrightarrow42x-39=4\)
\(\Leftrightarrow42x=4+39\)
\(\Leftrightarrow42x=43\)
\(\Leftrightarrow x=\dfrac{43}{42}\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{\dfrac{43}{42}\right\}\)
Bài 2: tự làm đi :)))))))))))
Bài 3:
\(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n⋮5\)
Vậy \(n\left(2n-3\right)-2n\left(n+1\right)⋮5\) (đpcm)
3. Ta có: n(2n - 3) - 2n(n+1) = 2n\(^{^2}\) - 3n - 2n\(^{^2}\) - 2n
= -5n
Mà -5n \(⋮\) 5
Vậy n(2n-3) - 2n(n+1) luôn chia hết cho 5 với mọi số nguyên n
bạn ơi, xin lỗi vì ko có lời giải vì mình quen cái thói kết quả ko rồi
a, m = 1 => n = 2
m = 2 => n = 1
b, tách 5 thành 4+1 sau đó áp dụng hằng đẳng thức, câu này dễ mà bạn
c, xét từ x^2 đến x^2017 có 2016 số tự nhiên có số mũ liên tiếp
=> sẽ có 1008 số chẵn và 1008 số lẻ
ừm, đến đây nói sao nhỉ????, để các giá trị của các lũy thừa ko thây đổi chỉ xảy ra khi x=0 x=1 x=-1
xét x=1 (loại)
x=0 (loại)
x= -1 (loại nốt) cái này mình sẽ giải thích
khi x=-1 thì x^2+...+x^2017 sẽ =0 (vì số mx lẻ = số mũ chẵn, hệ số =-1; nên =0
lại cộng thêm 1 số lớn hơn 0 nên => nó ko thể = 0
=> ko có x thỏa mãn
mong bạn thông cảm vì ko có lời giải dễ hiểu hơn vì cách giải thích của mình rất tệ
1) \(4a\left(x-5\right)-2\left(5-x\right)\)
\(=4a\left(x-5\right)+2\left(x-5\right)\)
\(=2\left(x-5\right)\left(2a+1\right)\)
2) \(-3a\left(x-3\right)-a^2\left(3-x\right)\)
\(=-3a\left(x-3\right)+a^2\left(x-3\right)\)
\(=a\left(x-3\right)\left(-3+a\right)\)
3) \(2a^2b\left(x+y\right)-4a^3b\left(-x-y\right)\)
\(=2a^2b\left(x+y\right)+4a^3b\left(x+y\right)\)
\(=2a^2b\left(x+y\right)\left(1+2a\right)\)
4) \(-3a\left(x-3\right)-a^2\left(3-a\right)\)
Mình nghĩ câu này đề sai và hình như nó là câu 2 thì phải
5) \(x^{m+1}-x^m\)
\(=x^m.x-x^m\)
\(=x^m\left(x-1\right)\)
6) \(x^{m+1}+x^m\)
\(=x^m.x+x^m\)
\(=x^m\left(x+1\right)\)
7) \(x^{m+2}-x^m\)
\(=x^m.x^2-x^m\)
\(=x^m\left(x^2-1\right)\)
\(=x^m\left(x-1\right)\left(x+1\right)\)
8) \(x^{m+2}-x^2\)
\(=x^m.x^2-x^2\)
\(=x^2\left(x^m-1\right)\)
9) \(x^{m+2}-x^{m+1}\)
\(=x^{m+1}.x-x^{m+1}\)
\(=x^{m+1}\left(x-1\right)\)
mik làm câu 1 nhé
để biểu thức nhận giá trị nguyên thì x2+2x+12 chia hết cho x-5 ( 1)
Mà x-5 chia hết cho x-5 => x(x-5) chia hết cho x-5
hay x2-5x chia hết cho x-5 (2)
lấy (1)trừ (2) ta được
x2+2x+12 -x2+5x chia hết cho x-5
hay 7x+12 chia hết cho x-5
=> 7(x-5)+47 chia hết cho x-5
=>47 chia hết cho x-5
=> x-5 thuộc ước nguyên của 47
đến đây bạn tự làm tiếp nhé !!
a) Có \(\dfrac{x^4-x^3+6x^2-x+n}{x^2-x+5}\) được thương là x2 +1 và dư n-5
Vậy để đa thức trên chia hết thì n-5 = 0 => n = 5
b) Có \(\dfrac{3x^3+10x^2-5+n}{3x+1}\) được thương là x2 + 3x -1 và dư -4 +n
Vậy để đa thức trên chia hết thì -4 + n = 0 => n = 4
c) Theo đề bài ta có:
\(\dfrac{2n^2+n-7}{n-2}=2n+5+\dfrac{3}{n-2}\)
Với n nguyên để đa thức trên chia hết thì ( n - 2) phải thuộc ước của 3
Từ đó, ta có:
n-2 | n |
-1 | 1 |
1 | 3 |
-3 | -1 |
3 | 5 |
Vậy khi n đạt những giá trị trên thì đa thức trên sẽ chia hết
\(\frac{x+7}{3}+\frac{x+5}{4}=\frac{x+3}{5}+\frac{x+1}{6}\)
\(\Rightarrow\frac{x+7}{3}+2+\frac{x+5}{4}+2=\frac{x+3}{5}+2+\frac{x+1}{6}+2\)
\(\Rightarrow\frac{x+13}{3}+\frac{x+13}{4}=\frac{x+13}{5}+\frac{x+13}{6}\)
\(\Rightarrow\frac{x+13}{3}+\frac{x+13}{4}-\frac{x+13}{5}-\frac{x+13}{6}=0\)
\(\Rightarrow\left(x+13\right)\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)
Vì \(\left(\frac{1}{3}>\frac{1}{4}>\frac{1}{5}>\frac{1}{6}\right)\Rightarrow\)\(\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)>0\)
\(\Rightarrow x+13=0\Leftrightarrow x=-13\)
\(\frac{x+m}{n+p}+\frac{x+n}{p+m}+\frac{x+p}{n+m}+3=0\)
\(\Rightarrow\frac{x+m}{n+p}+1+\frac{x+n}{p+m}+1+\frac{x+p}{n+m}+1=0\)
\(\Rightarrow\frac{x+m+n+p}{n+p}+\frac{x+m+n+p}{p+m}+\frac{x+m+n+p}{n+m}=0\)
\(\Rightarrow\left(x+m+n+p\right)\left(\frac{1}{n+p}+\frac{1}{p+m}+\frac{1}{n+m}\right)=0\)
Vì m,n,p là số dương nên \(\left(\frac{1}{n+p}+\frac{1}{p+m}+\frac{1}{n+m}\right)>0\)
\(\Rightarrow x+m+n+p=0\Rightarrow x=-\left(m+n+p\right)\)
\(\frac{5x+\frac{3x-4}{5}}{15}=\frac{\frac{3-x}{15}+7x}{5}+1-x\)
\(\Rightarrow\frac{\frac{25x+3x-4}{5}}{15}=\frac{\frac{3-x+105x}{15}}{5}+1-x\)
\(\Rightarrow\frac{\frac{28x-4}{5}}{15}=\frac{\frac{3+104x}{15}}{5}+1-x\)
\(\Rightarrow\frac{28x-4}{75}=\frac{3+104x}{75}+1-x\)
\(\Rightarrow\frac{28x-4}{75}=\frac{3+104x+75-75x}{75}\)
\(\Rightarrow\frac{28x-4}{75}=\frac{78+29x}{75}\)
\(\Rightarrow28x-4=78+29x\)
\(\Rightarrow x=-82\)
Ta có
a x 2 – 5 x 2 – a x + 5 x + a – 5 = x 2 a – 5 – x a – 5 + a – 5 = a – 5 x 2 – x + 1
Suy ra m = -5; n = 1
Đáp án cần chọn là: D