Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b
Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)
Dấu = xảy ra <=> a=b=1
b) Áp dụng BĐT bunhiacopxki có:
\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)
\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)
\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)
\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)
c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)
Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)
Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)
Áp dụng (1) vào S ta được:
\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)
Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)
\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)
\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)
Ta có : a2 + 2ab + b2 + b2 - 4b +4 = 0
<=> ( a + b )2 + ( b - 2 )2 = 0
mà: ( a + b )2≥0 ∀a,b
( b - 2 )2 ≥0 ∀b
Dấu "=" xảy ra khi :
a + b =0
b - 2 =0
<=> a + 2 =0 <=> a = -2
b =2
Thay a = -2 ; b =2 vào ta có:
M= 22 +7.2.2 + \(\dfrac{52}{-2-2}\)
M= 4 +28- \(\dfrac{52}{4}\)
M= 4 +28 - 13 = 19
a) Tam giác EBJ cân tại B Þ E 1 ^ = J 1 ^
Từ đó suy ra I J E ^ = J E F ^
Chứng minh tương tự ta có:
J E F ^ = E F G ^ = F G H ^ = G H I ^ = H I J ^ = I J E ^
b) Chứng minh được EF = GH = IJ và FG = HI = ẸJ
Gọi O là trung điểm của FG Þ AO là phân giác của F A G ^ ⇒ F A O ^ = 60 0
Tam giác FAO vuông tại O có F A O ^ = 60 0 ⇒ A O = A F 2 = x 2
Áp dụng định lý Pytago, tính được F O 2 = 3 x 2 4 ⇒ F G 2 = 3 x 2
Để hình lục giác EFGHIJ là lục giác đều Û EF = FG hay a 2 = 3 x 2 ⇒ x 2 = a 2 3
Cauchy Schwars
\(M\ge\frac{\left(1+1+1\right)^2}{\left(a+b+c\right)^2}=\frac{9}{\left(a+b+c\right)^2}\ge9\Rightarrow M_{min}=9\Leftrightarrow a=b=c=\frac{1}{3}\)
\(M=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\)
Dau '=' xay ra khi \(a=b=c=\frac{1}{3}\)
Vay \(M_{min}=9\)