Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d là ước dương của a và b suy ra: \(\hept{\begin{cases}a=d.a^'\\b=d.b^'\end{cases}}\)
có \(\frac{a+1}{b}+\frac{b+1}{a}\)nguyên dương suy ra \(\frac{a^2+b^2+a+b}{ab}\)nguyên dương\(\Rightarrow a^2+b^2+a+b\)chia hết cho a.b
có \(a.b=d.a^'.d.b^'=a^'.b^'d^2\Rightarrow a^2+b^2+a+b\)chia hết cho \(d^2\)
ta có: \(a^2+b^2+a+b=d^2.\left(a^'\right)^2+d^2\left(b^'\right)^2+d.a^'+d.b^'\)
\(=d\left(d\left(a^'\right)^2+d\left(b^'\right)^2+a^'+b^'\right)\)chia hết cho \(d^2\)
suy ra \(d\left(a^'\right)^2+d\left(b^'\right)^2+a^'+b^'=d\left(a^'+b^'\right)+a^'+b^'\)chia hết cho d \(\Rightarrow a^'+b^'\)chia hết cho d.\(\Rightarrow a^'+b^'\ge d\Leftrightarrow d.a^'+d.b^'\ge d^2\Leftrightarrow a+b\ge d^2\Leftrightarrow d\le\sqrt{a+b}\)
Ta có: \(\frac{a+1}{a}+\frac{b+1}{b}=\frac{ab+a+b+ab}{ab}=2+\frac{a+b}{ab}\in Z\)
\(\Rightarrow\frac{a+b}{ab}\in Z\forall a,b>0\) nên \(\frac{a+b}{ab}\ge1\Rightarrow a+b\ge ab\)
Do d là ước a nên \(a⋮d\Rightarrow a\ge d>0\)
d là ước b nên \(b⋮d\Rightarrow b\ge d>0\)
Suy ra \(ad\ge d^2\Rightarrow a+b\ge d^2\Rightarrow\sqrt{a+b}\ge d\)
Điều phải chứng minh
\(P=\frac{a+1}{a}+\frac{b+1}{b}=2+\frac{1}{a}+\frac{1}{b}=2+\frac{a+b}{ab}\)
\(\hept{\begin{cases}a,b>0\\P\in Z\end{cases}\Rightarrow ab\le\left(a+b\right)}\)(*) a,b vai trò như nhau; g/s \(a\le b\Rightarrow d\le a\le b\Rightarrow d^2\le ab\)
Từ (*)\(\Rightarrow d^2\le ab\le\left(a+b\right)\Rightarrow d\le\sqrt{ab}\le\sqrt{a+b}\)
Đẳng thức chỉ xẩy ra khi a=b=2=> dpcm
Đây là số học lớp 10.
Thiếu\(\left(a;b\right)=d\)
Vì \(\frac{a+1}{b}+\frac{b+1}{a}\inℤ\Rightarrow a^2+b^2+a+b⋮ab\)
Lại có:\(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\)Suy ra ab\(⋮\)\(d^2\)
\(\Rightarrow a^2+b^2+a+b⋮d^2\)
Mà \(a^2+b^2⋮d^2\)
Suy ra \(a+b⋮d^2\Rightarrow a+b\ge d^2\Rightarrow\sqrt{a+b}\ge d\)(đpcm)
1. Ta có : \(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{a+b}{a+b+c+d}\)
\(\frac{c}{a+b+c+d}< \frac{c}{a+c+d}< \frac{b+c}{a+b+c+d}\)
\(\frac{d}{a+b+c+d}< \frac{d}{a+b+d}< \frac{c+d}{a+b+c+d}\)
Cộng vế theo vế ta được :
\(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\) ( đpcm )
2. Áp dụng bất đẳng thức Cô - si cho 2 số ko âm b-1 và 1 ta có :
\(\sqrt{\left(b-1\right)\cdot1}\le\frac{\left(b-1\right)+1}{2}=\frac{b}{2}\)
Dấu "=" xảy ra <=> b - 1 = 1 <=> b = 2
\(\Rightarrow a\sqrt{b-1}=a\sqrt{\left(b-1\right)\cdot1}\le a\cdot\frac{b}{2}=\frac{ab}{2}\)
Tương tự ta có : \(b\sqrt{a-1}\le\frac{ab}{2}\) Dấu "=" xảy ra <=> a = 2
Do đó : \(a\sqrt{b-1}+b\sqrt{a-1}\le\frac{ab}{2}+\frac{ab}{2}=ab\)
Dấu "=" xảy ra <=> a = b = 2