K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 5 2021

\(P=\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{9ab}{a^2+b^2}=\dfrac{a^2+b^2}{ab}+\dfrac{9ab}{a^2+b^2}\ge2\sqrt{\dfrac{\left(a^2+b^2\right).9ab}{ab\left(a^2+b^2\right)}}=6\)

Dấu "=" xảy ra khi \(a^2+b^2=3ab\)

(Đề bài sai, đây là cực trị ko xảy ra tại \(a=b\))

 

6 tháng 8 2016

\(\left(a+b+c\right)^2\ge0\) 

giả sử 3 số x,y,x đều là số âm 

=> 9ab là số âm

=>ab là số âm

=> a,b khác dấu

giả sử 9bc là số âm

=>bc âm

=>b,c khác dấu

a,b khác dấu

b,c khác dấu

=>a , c cùng dấu

=>9ac dương

=> z là số dương

trong 3 số x,y,x ít nhất có 1 số dương

=>đpcm

 

 

13 tháng 8 2016

arigatou ^^

6 tháng 1 2017

Giả sử

\(\hept{\begin{cases}\left(a+b+c\right)^2\le9ab\\\left(a+b+c\right)^2\le9bc\\\left(a+b+c\right)^2\le9ca\end{cases}}\)

Cộng vế theo vế được

\(3\left(a+b+c\right)^2\le9ab+9bc+9ca\)

\(\Leftrightarrow\left(a+b+c\right)^2\le3\left(ab+bc+ca\right)\)

\(\Leftrightarrow\)a2 + b2 + c2 \(\le\)ab + bc + ca (1)

Ta lại có:

a2 + b2 + c2 \(\ge\)ab + bc + ca (2)

Từ (1) và (2) 

\(\Rightarrow\)a2 + b2 + c2 = ab + bc + ca

\(\Rightarrow\)a = b = c (trái giả thuyết)

\(\Rightarrow\)Giả sử là sai

Vậy tồn tại một trong các số 9ab , 9bc , 9ca nhỏ hơn ( a+b+c )2

6 tháng 1 2017

khó quá 

17 tháng 8 2017

a)Áp dụng bđt Cô-si:

\(\dfrac{a}{b}+\dfrac{b}{a}-1+\dfrac{ab}{a^2-ab+b^2}=\dfrac{a^2+b^2-ab}{ab}+\dfrac{ab}{a^2-ab+b^2}\ge2\sqrt{\dfrac{a^2+b^2-ab}{ab}.\dfrac{ab}{a^2-ab+b^2}}=2\)

=>\(\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{ab}{a^2-ab+b^2}\ge3\)

Dấu "=" xảy ra khi a=b=1

b) bđt sai rồi

(a+b+c)2 luôn lớn hơn hoặc bằng 0

giả sử cả 3 số x;y;z đều là số âm

=>9ab là số âm

=>ab là số âm

=>a;b khác dấu

9bc là số âm

=>bc là số âm

=>b;c khác dấu

a;b khác dấu

b;c khác dấu

=>a;b cùng dấu

=>9ca là số dương

=>z là số dương

=>trái giả thuyết

=>trong 3 số x;y;z sẽ có ít nhất 1 số là số dương

=>đpcm

11 tháng 3 2016

LƯU Ý

Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.

Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.

Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.

30 tháng 3 2020

*)\(b^2+c^2=a^2\)

\(\Leftrightarrow b^2=a^2-c^2\)

\(\Leftrightarrow b=\sqrt{a^2-c^2}\)

Ta có: \(\sqrt{a^2-c^2}>c\Leftrightarrow a^2-c^2>c^2\)

\(\Leftrightarrow a^2>2c^2\)(luôn đúng)

=> c<b

*) \(a^2=b^2+c^2\Leftrightarrow\hept{\begin{cases}c=3\\b=4\\a=5\end{cases}\Leftrightarrow c=b+1}\)

27 tháng 7 2018

Áp dụng bđt Svacxơ ta có : VT >= (a+b+c)^2/(2a+2b+2c) = (a+b+c)/2 = VP

=> đpcm