Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, vì trong 3 số đó có số chia hết cho 3
b, vì trong 3 số lẻ có số chia hết cho 3
c, vì 6 số thì sẽ 3 cặp có tổng tương đương và cặp ở giữa là 2 số liên tiếp có tổng là số lẻ cho nên 3 cặp đó sẽ bằng tổng nhau nhân lên 3 lần lên 6 số liên tiếp ko chia hết cho 6 mà chỉ chia hết cho 3.
a)Gọi 3 số chẵn liên tiếp là 2n;2n+2;2n+4.Theo bài ra ta có: \(\left(2n+2n+2+2n+4\right)⋮3\)
- \(2n+2n+2+2n+4=6n+6\)
\(=6\left(n+1\right)\)
\(=\left[3.2\left(n+1\right)\right]⋮3\)=>Điều phải chứng minh.
b)Gọi 3 số lẻ liên tiếp là 2n+1;2n+3 và 2n+5.Theo bài ra ta có: \(\left(2n+1+2n+3+2n+5\right)⋮3\)
- \(2n+1+2n+3+2n+5=6n+9\)
\(=\left[3\left(2n+3\right)\right]⋮3\) =>Điều phải chứng minh.
c)Gọi 6 số nguyên liên tiếp là n;n+1;n+2;...;n+5.Theo bài ra ta có:
- \(\left(n+n+1+n+2+n+3+n+4\right)⋮5\)
\(=5n+10\)
\(=\left[5\left(n+2\right)\right]⋮5\)=>Điều phải chứng minh.
- \(\left(n+n+1+n+2+n+3+n+4+n+5\right)\)không \(⋮6\)
\(=6n+15\) .Vì \(15\) không \(⋮6\)=> \(6n+15\)không \(⋮6\).
T_i_c_k cho mình nha.
Thank you so much!Wish you would better at Math ^^
Ta có: a\(⋮̸\)2 => a + 1 ⋮ 2 ; b \(⋮̸\)2 => b + 1 ⋮ 2
=> a + 1 + b + 1 ⋮ 2 => a + b + 2 ⋮ 2 mà 2 ⋮ 2 => a + b ⋮ 2.
=> đpcm.
Vậy ta chứng minh được hai số a và b \(⋮̸\) 2 nhưng a + b ⋮ 2
a là số không chia hết cho 2\(\Rightarrow\)a có dạng:2k+1
b cũng là số không chia hết cho 2\(\Rightarrow\)b có dạng 2l+1
\(\Rightarrow a+b=\left(2k+1\right)+\left(2l+1\right)\)
\(=2k+1+2l+1\)
\(=2k+2l+2\)
\(=2\left(k+l+1\right)⋮2\left(đpcm\right)\)
nhớ t.i.c.k đúng cho mk nha
a) Gọi ƯCLN(a ; b) = d
=> \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮d\\b^2⋮d\end{cases}}\Rightarrow a^2+b^2⋮d\)
mà theo đề ra \(a^2+b^2⋮3\)
=> \(d⋮3\)
Mà \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\)
b) Gọi ƯCLN(a ; b) = d
=> \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮d\\b^2⋮d\end{cases}}\Rightarrow a^2+b^2⋮d\)
mà theo đề ra \(a^2+b^2⋮7\)
=> \(d⋮7\)
Mà \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a⋮7\\b⋮7\end{cases}}\)
Bài 1:
Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y
Vì 6x+11y chia hết cho 31, 31y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 => x+7y chia hết cho 31
Bài 3:
a,n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 E Ư(13)={1;-1;13;-13}
=>n E {-2;-4;10;-16}
d,n2+3 chia hết cho n-1
=>n2-n+n-1+4 chia hết cho n-1
=>n(n-1)+(n-1)+4 chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {2;0;3;-1;5;-3}
P(x)=x^3-a^2.x+2016.b
Do 2016b chia hết cho 3 với mọi số nguyên b,ta chỉ cần xét x^3-a^2.x
có:x^3-a^2.x=x(x^2-a^2)=x(x+a)(x-a)
+nếu x chia hết cho 3=>P(x) chia hết cho 3
+nếu x và a chia 3 có cùng số dư=>(x-a)chia hết cho 3=>p(x) chia hết cho 3
+nếu x và a có số dư khác nhau khi chia hết cho 3(1 và 2)=>(x+a) chia hết cho 3=>P(x) chia hết cho 3
=>ĐPCM
ta có a và b không chia hết cho 3
Suy ra a và b chia 3 dư 1 hoặc dư 2
Với mọi số a b không chia hết cho 3 thì bình phương của nó chia 3 luôn dư 1
Suy ra a^2 - b^2 chia hết cho3 ( đpcm )