Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
Cách 1:
p là số nguyên tố, p>3 => p không chia hết cho 3 (1)
p+2 là số nguyên tố, p+2>5>3 => p+2 không chia hết cho 3 (2)
Ta có: p(p+1)(p+2) là tích 3 số tự nhiên liên tiếp => p(p+1)(p+2) chia hết cho 3 (3)
Từ (1),(2),(3) => p+1 chia hết cho 3 (*)
Ta lại có: p là số nguyên tố, p>3 => p lẻ => p+1 chẵn => p+1 chia hết cho 2 (**)
Mà (2;3)=1 (***)
Từ (*),(**),(***) => p+1 chia hết cho 6.
Cách 2:
Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2 (k thuộc N)
Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.
Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).
=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.
Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.
Cho p là số nguyên tố lớn hơn 3 , biết p + 2 cũng là số nguyên tố. Chứng tỏ rằng p +1 chia hết cho 6
p là số nguyên tố lớn hơn 3 nên p = 2k + 1 hoặc p = 2k + 2
- Nếu p = 2k + 1 => p + 2 = 2k + 3,là số nguyên tố nếu p không là bội của 3. Do đó p + 1 = 2k + 2 chia hết cho 6.
- Nếu p = 2k + 2 => p + 2 = 3k + 4 là hợp số, loại.
=> đpcm
tick đúng cho tớ với !
học 218 Lý tự Trọng hả