Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Đề sai, thử với x = -2 là thấy không thỏa mãn.
Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:
\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)
\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)
Không thể xảy ra dấu đẳng thức.
Câu a)
Ta có a + b \(\ge\)1 => a \(\ge\) 1 - b
Nên a2 + b2 \(\ge\) (1 - b)2 + b2 = 2b2 - 2b + 1 = 2(b2 - 2b.1/2 + 1/4 + 1/2) = 2(b - 1/2)2 + 1 \(\ge\) 1
Câu b) Áp dụng BĐT Bunhiacopxki ta có
(x + y)2 = (1.x + 1.y)2 \(\le\) (12 + 12)(x2 + y2) = 2.1 = 2
Dấu "=" xảy ra <=> x = y
câu1 : cần sửa lại là A2 + B2 \(\ge\frac{1}{2}\)
Ta chứng minh được : (A+B)2 \(\le2.\left(A^2+B^2\right)\) (*)
<=> A2 + B2 + 2A.B \(\le\) 2. (A2 + B2)
<=> 0 \(\le\) A2 + B2 - 2.A.B <=> 0 \(\le\) (A-B)2 luôn đúng => (*) đúng
b) Áp sung câu a => (x+y)2 \(\le\)2.(x2 + y2) = 2 => đpcm
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(a^2+b^2=\frac{a^2}{1}+\frac{b^2}{1}\ge\frac{\left(a+b\right)^2}{1+1}=\frac{1^2}{2}=\frac{1}{2}\left(đpcm\right)\)
Đẳng thức xảy ra <=> a = b
úi xin lỗi bài kia thiếu ._. Đẳng thức xảy ra <=> a=b=1/2 nhé
2. Ta có : a3 + b3 + ab = ( a + b )( a2 - ab + b2 ) + ab
= a2 - ab + b2 + ac = a2 + b2 ( do a+b=1 )
Sử dụng kết quả ở bài trước ta có đpcm
Đẳng thức xảy ra <=> a=b=1/2
ta có : \(a+b>=2\sqrt{ab};b+c>=2\sqrt{bc};c+a>=2\sqrt{ca}\)
=> (a+b)(b+c)(c+a)>=\(2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)
a+b >= 1 nên (a+b)^2 >= 1
<=> a^2 + b^2 + 2ab >= 1 (1)
Mặt khác (a-b)^2 >= 0
<=> a^2 + b^2 -2ab >= 0 (2)
Cộng (1) với (2) ta có
2a^2 + 2b^2 >= 1
<=> a^2 + b^2 >= 1/2
\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge4\)
\(\Leftrightarrow1+\frac{b}{a}+\frac{a}{b}+1\ge4\)
\(\Leftrightarrow\frac{b^2+a^2}{ab}\ge2\)
Vì a > 0 và b > 0 \(\Rightarrow ab>0\)
Vậy \(\frac{b^2+a^2}{ab}\ge2\Leftrightarrow b^2+a^2\ge2ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
Vậy bất đẳng thức được chứng minh.
bài này có nhiều hướng đi lắm =))
\(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge4\)
1. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)
=> \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge\frac{4}{a+b}\cdot\left(a+b\right)=4\). Dấu "=" xảy ra <=> a=b
2. Áp dụng bất đẳng thức AM-GM ta có : \(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\); \(a+b\ge2\sqrt{ab}\)
=> \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)\ge2\sqrt{\frac{1}{ab}}\cdot2\sqrt{ab}=4\). Dấu "=" xảy ra <=> a=b
3. \(\left(\frac{1}{a}+\frac{1}{b}\right)\left(a+b\right)=1+\frac{b}{a}+\frac{a}{b}+1\ge2+2\sqrt{\frac{b}{a}\cdot\frac{a}{b}}=2+2=4\)(AM-GM)
Dấu "=" xảy ra <=> a=b
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
Ta có:a<hoặc=4
a^2> hoặc = 0
=>a^2(2-a)> hoặc = 0
=>a^2(2-a) + 32 > 0