\(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)......\left(\frac{1}{100^2}-1\r...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2015

ta có:A=\(\frac{-3}{2^2}.\frac{-8}{3^2}....\frac{-9999}{100^2}\)

A có 99 thừa số âm

=>A<0

\(=>-A=\frac{3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}....\frac{99.101}{100.100}\)

=>\(-A=\frac{101}{100.2}=\frac{101}{200}>\frac{100}{200}=\frac{1}{2}=>-A>\frac{1}{2}=>A<-\frac{1}{2}\)

tick nhé

2 tháng 1 2016

sao tớ nhẩm ra là 10 nhỉ!!??

2 tháng 1 2016

Ta có:

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)

=> \(\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)

=> \(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

+) Nếu a + b + c = 0 => a + b = -c; b + c = -a; c + a = -b

=> \(\frac{a+b}{c}=-1\);\(\frac{b+c}{a}=-1\)\(\frac{c+a}{b}=-1\)

=> M = (-1)3 = -1

+) Nếu a + b + c khác 0 => a = b = c => a + b = 2c; b + c = 2a; c + a = 2b

=> M \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{c}.\frac{b+c}{a}.\frac{c+a}{b}=2.2.2=8\)

Vậy M = -1 hoặc M = 8

10 tháng 7 2019

B1:

Ta có: a - b = ab => a = ab + b = b(a + 1)

Thay a = b(a + 1) vào a  - b  = a : b ta có: \(a-b=\frac{b\left(a+1\right)}{b}=a+1\)

=> a - b = a + 1 => a - a - b = 1 => -b = 1 => b = -1 

Lại có: ab = a - b

<=> a x (-1) = a - (-1) <=> -a = a + 1 <=> -a - a = 1 <=> -2a = 1 <=> a = -1/2

Vậy...

B2:

a, \(3y\left(y-\frac{2}{5}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3y=0\\y-\frac{2}{5}=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=\frac{2}{5}\end{cases}}}\)

b, \(7\left(y-1\right)+2y\left(y-1\right)=0\)

\(\Rightarrow\left(y-1\right)\left(7+2y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y-1=0\\7+2y=0\end{cases}\Rightarrow}\orbr{\begin{cases}y=1\\2y=7\end{cases}\Rightarrow}\orbr{\begin{cases}y=1\\y=\frac{7}{2}\end{cases}}\)

B3: \(K=\frac{-2}{3}+\frac{3}{4}-\frac{-1}{6}+\frac{-2}{5}\)

\(K=\left(-\frac{2}{3}+\frac{1}{6}\right)+\left(\frac{3}{4}-\frac{2}{5}\right)\)

\(K=\left(\frac{-4}{6}+\frac{1}{6}\right)+\left(\frac{15}{20}-\frac{8}{20}\right)\)

\(K=\frac{-1}{2}+\frac{7}{20}=\frac{-10}{20}+\frac{7}{20}=\frac{-3}{20}\)

9 tháng 2 2017

A=\(\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}...\frac{1-100^2}{100^2}\)

trong biểu thức trên có 99 số âm nên tích sẽ âm nên ta có thể viết lại như sau:

A=-\(\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}...\frac{100^2-1}{100^2}\),

Chú ý: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

do vậy: A=-\(\frac{1.3}{2^2}.\frac{2.4}{3^2}...\frac{99.101}{100^2}=\frac{1.2.3...100.101}{2^2.3^2...100^2}=\frac{-101}{100!}>\frac{-101}{2.101}=\frac{-1}{2}\)

Vậy A>\(-\frac{1}{2}\)

30 tháng 1 2020

\(A=\frac{-1.3}{2^2}.\frac{-2.4}{3^2}...\frac{-99.101}{100^2}\)

\(=-\left(\frac{1.2...99}{2.3...100}.\frac{3.4...101}{2.3...100}\right)\)

\(=-\left(\frac{1}{100}.\frac{101}{2}\right)\)

\(=-\frac{101}{200}< \frac{-100}{200}=\frac{-1}{2}\)

20 tháng 7 2016

a.

\(\left(\frac{1}{2}-1\right)\times\left(\frac{1}{3}-1\right)\times\left(\frac{1}{4}-1\right)\times...\times\left(\frac{1}{2016}-1\right)\left(\frac{1}{2017}-1\right)\)

\(=\left(-\frac{1}{2}\right)\times\left(-\frac{2}{3}\right)\times\left(-\frac{3}{4}\right)\times...\times\left(-\frac{2015}{2016}\right)\times\left(-\frac{2016}{2017}\right)\)

\(=\frac{1}{2017}\)

b.

\(\frac{2^{50}\times7^2+2^{50}\times7}{4^{26}\times112}=\frac{2^{50}\times\left(7^2+7\right)}{\left(2^2\right)^{26}\times112}=\frac{2^{50}\times\left(49+7\right)}{2^{52}\times2\times56}=\frac{56}{2^3\times56}=\frac{1}{8}\)

20 tháng 7 2016

a. (1/2-1).(1/3-1)(1/4-1). ... .(1/2017-1)=(-1/2)(-2/3)(-3/4). ... .(-2016/2017)

Vì dãy số có 2016 số hạng âm nên tích của chúng là một số dương.

Ta có:(-1/2)(-2/3)(-3/4). ... . (-2016/2017)=1/2017                                                        

\(A=\frac{-3}{4}.\frac{-8}{9}......\frac{-9999}{1000}\)

\(=-\frac{1.3}{2.2}.\frac{2.4}{3.3}....\frac{99.101}{100.100}\)

\(=-\frac{1.2.3...99}{2.3...100}.\frac{3.4...101}{2.3...100}\)

\(=-\frac{1}{100}.\frac{101}{2}=-\frac{101}{200}< \frac{-100}{200}=\frac{-1}{2}\)

VẬY \(A< \frac{-1}{2}\)