K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2017

a/ \(\frac{x-2}{x+2\sqrt{x}}-\frac{1}{\sqrt{x}}+\frac{2}{\sqrt{x}+2}\)

\(=\frac{x-2}{x+2\sqrt{x}}-\frac{\sqrt{x}+2}{x+2\sqrt{x}}+\frac{2\sqrt{x}}{x+2\sqrt{x}}\)

\(=\frac{x+\sqrt{x}-4}{x+2\sqrt{x}}\)

b/ \(\frac{x+\sqrt{x}-4}{x+2\sqrt{x}}=\frac{4+2\sqrt{3}+\sqrt{\left(\sqrt{3}+1\right)^2}-4}{4+2\sqrt{3}+2\sqrt{\left(\sqrt{3}+1\right)^2}}\)

\(=\frac{4+2\sqrt{3}+\sqrt{3}+1-4}{4+2\sqrt{3}+2\sqrt{3}+2}=\frac{1+3\sqrt{3}}{6+4\sqrt{3}}\)

16 tháng 11 2017

câu c nữa bạn

24 tháng 7 2016

ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)

a) \(A=\frac{2\sqrt{x}-9}{x-2\sqrt{x}-3\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)

\(A=\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(A=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

24 tháng 7 2016

b) Thay \(x=\frac{1}{9}\)vào A, ta có:

\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=\frac{\frac{1}{3}+1}{\frac{1}{3}-3}=\frac{\frac{4}{3}}{\frac{-8}{3}}=-\frac{1}{2}\)

27 tháng 7 2018

KHÔNG BIẾT

16 tháng 10 2017

Câu 1) a) ĐKXĐ \(x\ge0,\)\(x\ne4\)A=\(\frac{x+2\sqrt{x}-4}{2\left(x-4\right)}\)b) Mình chưa làm được       Câu 2) a) ĐKXĐ \(x>0,\)\(x\ne4\)A=\(\frac{\sqrt{x}-1}{\sqrt{x}}\)b) Để a<\(\frac{1}{2}\)\(\Rightarrow\)\(\frac{\sqrt{x}-1}{\sqrt{x}}< \frac{1}{2}\)\(\Rightarrow x< 1\)\(\Rightarrow0< x< 1\)thỏa mãn bài toán    c) Ta có A=\(\frac{\sqrt{x}-1}{\sqrt{x}}=1-\frac{1}{\sqrt{x}}\), để A \(\in Z\)\(\Rightarrow\sqrt{x}\inƯ\left(1\right)\)\(\Rightarrow x=1\)( thỏa mãn ĐK)

10 tháng 8 2018

như lồn

30 tháng 7 2019

\(ĐKXĐ:\)

\(\hept{\begin{cases}x-9\ne0\\\sqrt{x}-2\ne0\\\sqrt{x}+3\ne0;x\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ne9\\x\ne4\\x\ge0\end{cases}}\)

Vậy...................................................

30 tháng 7 2019

\(A=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)

\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)

\(=\frac{\sqrt{x}-\sqrt{x}-3}{\left(\sqrt{x}+3\right)}:\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{-3}{\sqrt{x}+3}:\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{x-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{-3}{\sqrt{x}+3}:\frac{9-x+x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-3}{\sqrt{x}+3}:\frac{-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-3}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4-x}\)

\(=\frac{3\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

\(=\frac{3}{\left(2+\sqrt{x}\right)}\)

26 tháng 2 2020

M = \(\frac{2\sqrt{x}-9x}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    =\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\left(\sqrt{x}+3\right)\left(3-\sqrt{x}\right)+\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)}\)

    =\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{9-x+2x-3\sqrt{x}}{x-5\sqrt{x}+6}\)

    =\(\frac{x-\sqrt{x}}{x-5\sqrt{x}+6}\)

7 tháng 7 2019

\(dkxd\Leftrightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}-2\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}}\)

\(A=\left(\frac{\sqrt{x}}{x-4}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}+2}.\)

\(=\left(\frac{\sqrt{x}}{x-4}-\frac{2\left(\sqrt{x}+2\right)}{x-4}+\frac{\sqrt{x}-2}{x-4}\right):\frac{1}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+2}{1}\)

\(=\frac{-6\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=-\frac{6}{\sqrt{x}-2}\)

7 tháng 7 2019

\(A=\)\(\left(\frac{\sqrt{x}}{x-4}+\frac{2}{2-\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\)\(:\frac{1}{\sqrt{x}+2}\)

a,ĐKXĐ:\(\hept{\begin{cases}x\ge0\\2-\sqrt{x}\\x-4\ne0\end{cases}\ne0}\)\(\Rightarrow\)\(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

\(A=\)\(\left(\frac{\sqrt{x}}{x-4}+\frac{2}{2-\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\)\(:\frac{1}{\sqrt{x}+2}\)

\(A=\)\(\left(\frac{\sqrt{x}}{x-4}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\right)\)\(.\left(\sqrt{x}+2\right)\)

\(A=\)\(\left(\frac{\sqrt{x}-2\left(\sqrt{x}+2\right)+\sqrt{x}-2}{x-4}\right)\)\(.\left(\sqrt{x}+2\right)\)

\(A=\)\(\left(\frac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{x-4}\right)\)\(.\left(\sqrt{x}+2\right)\)

\(A=\)\(\left(\frac{-6}{x-4}\right)\)\(.\left(\sqrt{x}+2\right)\)

\(A=\)\(\frac{-6}{\sqrt{x}-2}\)

b,\(x=9-4\sqrt{5}\)\(\Rightarrow\)\(A=\)\(\frac{-6}{\sqrt{9-4\sqrt{5}}-2}\)\(=\frac{-6}{\sqrt{5-2.2\sqrt{5}+4}-2}\)

\(A=\)\(\frac{-6}{\sqrt{\left(\sqrt{5}-2\right)^2}-2}\)\(=\frac{-6}{\sqrt{5}-2-2}\)\(=\frac{-6}{\sqrt{5}-4}\)

c,\(A>-1\)\(\Rightarrow\)\(\frac{-6}{\sqrt{x}-2}\)\(>-1\)\(\Rightarrow\)\(\frac{-6}{\sqrt{x}-2}+1>0\)

\(\Leftrightarrow\)\(\frac{-6+\sqrt{x}-2}{\sqrt{x}-2}>0\)

\(\Leftrightarrow\)\(\frac{\sqrt{x}-8}{\sqrt{x}-2}>0\)