Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(đk:\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
b) \(x=3+2\sqrt{2}\Rightarrow\sqrt{x}=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
\(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{2}+1\right)-1}{\sqrt{2}+1-2}=\dfrac{2\sqrt{2}+1}{\sqrt{2}-1}\)
c) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{1}{2}\)
\(\Leftrightarrow4\sqrt{x}-2=\sqrt{x}-2\Leftrightarrow3\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)
d) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}>2\)
\(\Leftrightarrow2\sqrt{x}-1>2\sqrt{x}-4\Leftrightarrow-1>-4\left(đúng\forall x\right)\)
e) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}+\dfrac{3}{\sqrt{x}-2}=2+\dfrac{3}{\sqrt{x}-2}\in Z\)
\(\Rightarrow\sqrt{x}-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(x\ge0\)
\(\Rightarrow x\in\left\{1;9;25\right\}\)
để A là số chính phương thì
\(x^2-3x+2=m^2\left(m\in N\right)\)
\(\Leftrightarrow4\left(x^2-3x+2\right)=4m^2\)
\(\Leftrightarrow\left(2x\right)^2-12x+8=\left(2m\right)^2\)
\(\Leftrightarrow\left(2x\right)^2-2.6.x+6^2-28=\left(2m\right)^2\)
\(\Leftrightarrow\left(2x-6\right)^2-\left(2m\right)^2=28\)
\(\Leftrightarrow\left(2x-6-2m\right)\left(2x-6+2m\right)=28\)
Vì \(x,m\in N\)nên \(\left(2x-6-2m\right)\le\left(2x-6+2m\right)\)
\(\Leftrightarrow\hept{\begin{cases}\hept{\begin{cases}2x-6-2m=1\\2x-6+2m=28\end{cases}}\\\hept{\begin{cases}2x-6-2m=2\\2x-6+2m=14\end{cases}}\\\hept{\begin{cases}2x-6-2m=4\\2x-6+2m=7\end{cases}}\end{cases}}\Leftrightarrow\hept{\begin{cases}\hept{\begin{cases}x=\frac{41}{4}\left(loại\right)\\m=\frac{27}{4}\left(loại\right)\end{cases}}\\\hept{\begin{cases}x=4\left(chọn\right)\\m=0\left(chọn\right)\end{cases}}\\\hept{\begin{cases}x=\frac{11}{4}\left(loại\right)\\m=-\frac{9}{4}\left(loại\right)\end{cases}}\end{cases}}\)
bị lỗi mạng nha bạn ơi, phải đặt trường hợp nữa và chỉ chọn x=4
câu b thì cũng làm tương tự
\(xy-3x=27-4y\)
\(\Leftrightarrow x\left(y-3\right)=12-4y+15\)
\(\Leftrightarrow x\left(y-3\right)+4y-12=15\)
\(\Leftrightarrow x\left(y-3\right)+4\left(y-3\right)=15\)
\(\Leftrightarrow\left(y-3\right)\left(x+4\right)=15=\left(-1\right).\left(-15\right)=1.15=\left(-3\right)\left(-5\right)=3.5\)
bạn thay \(\left(y-3\right),\left(x-4\right)\)với các cặp giá trị tương ứng sau đó tìm ra x,y nha!
Điều kiện: \(a\ge0;a\ne1\)
\(A=\frac{\sqrt{a}+3}{\sqrt{a}-3}\)
\(=\frac{\sqrt{a}-3+6}{\sqrt{a}-3}\)
\(=\frac{\sqrt{a}-3}{\sqrt{a}-3}+\frac{6}{\sqrt{a}-3}=1+\frac{6}{\sqrt{a}-3}\)
mà 1 \(\in\)Z
\(\Rightarrow\frac{6}{\sqrt{a}-3}\in Z\)
\(\Rightarrow\left(\sqrt{a}-3\right)\inƯ\left(2\right)\)
\(\Rightarrow\left(\sqrt{a}-3\right)\in\left\{1;-1;2;-2\right\}\)
\(\Rightarrow\sqrt{a}\in\left\{2;0;3;-1\right\}\)
\(\Rightarrow a\in\left\{4;0;9\right\}\)
Vậy là ta đã hoàn thành bài