K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

Ta có:

1/2^2+1/3^2+.....+1/20^2>1/2.2+1/3.4+1/4.5+.....+1/20.21

                                     =1/4+1/3-1/21

                                      =1/4+6/21

                                      =45/84>1/2

Ta có:

1/2^2+1/3^2+..........+1/20^2<1/1.2+1/2.3+.....+1/19.20

                                           =1-1/20

                                           =19/20<1

23 tháng 5 2017

A = 1 - 1/20

= 19/20

Thử: 1/2 < 19/20 < 1

Đs: 19/20

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}+\frac{1}{2^{100}}\)

=>\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)

=>\(A=2A-A=2+\frac{1}{2^{99}}+\frac{1}{2^{99}}\)

\(A=2+\frac{1}{2^{98}}\)

Vậy: \(A=2+\frac{1}{2^{98}}\)

22 tháng 4 2017

Gọi \(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\)

\(\Rightarrow2B=2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\)

\(\Rightarrow2B-B=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)

\(\Rightarrow B=2-\frac{1}{2^{100}}\)

\(\Rightarrow A=2\)

Vậy A = 2

16 tháng 3 2018

\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}...+\frac{19}{9^2.10^2}\)

=> \(A=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}...+\frac{19}{81.100}=\left(\frac{1}{1}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{9}\right)+\left(\frac{1}{9}-\frac{1}{16}\right)+...+\left(\frac{1}{81}-\frac{1}{100}\right)\)

=> \(A=\frac{1}{1}-\frac{1}{100}=1-\frac{1}{100}< 1\)

=> A <1 

(Là nhỏ hơn 1 chứ không phải lớn hơn 1 bạn nhé)

26 tháng 4 2016

c)\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2012}}\)

\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{2012}}\right)\)

\(2A=2+1+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2011}}\)

\(2A-A=\left(2+1+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....\frac{1}{2^{2012}}\right)\)

\(A=2-\frac{1}{2^{2012}}\)

26 tháng 4 2016

1/

A=1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

A=1/1-1/100

Vì 1/100>0

-->1/1-1/100<1

-->A<1

12 tháng 3 2017

Ta có : 

\(\frac{1}{101}>\frac{1}{200}\)

\(\frac{1}{102}>\frac{1}{200}\)

\(\frac{1}{103}>\frac{1}{200}\)

\(..........\)

\(\frac{1}{200}=\frac{1}{200}\)

Cộng vế với vế ta được :

\(\frac{1}{101}+\frac{1}{102}+....+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}\) (có 100 số \(\frac{1}{200}\) )\(=\frac{100}{200}=\frac{1}{2}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+......+\frac{1}{200}>\frac{1}{2}\) (đpcm)

12 tháng 3 2017

Ta có:

1/101>1/200

1/102>1/200

...

1/199>1/200

=>1/101+1/102+...+1/103>1/200+1/200+...+1/200(100 số 1/200)

                                     =1/200.100=1/2

Vậy 1/101+1/102+1/103+...+1/200>1/2

Ta có \(A=\frac{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{3000}}{\frac{2999}{1}+\frac{2998}{2}+...+\frac{1}{2999}}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{\left(1+1+...+1\right)+\frac{2998}{2}+...+\frac{1}{2999}}\)

              \(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{\left(1+\frac{2998}{2}\right)+\left(1+\frac{2997}{3}\right)+...+\left(1+\frac{1}{2999}\right)+\frac{3000}{3000}}\)

              \(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{\frac{3000}{2}+\frac{3000}{3}+...+\frac{3000}{3000}}\)

               = \(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}}{3000\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3000}\right)}=\frac{1}{3000}\)

Vậy A= \(\frac{1}{3000}\)

1 tháng 4 2016

Ai đó giúp tui đi , sáng mai kiểm tra ròi :'( 

21 tháng 4 2017

* Cách làm : Tử giữ nguyên,còn mẫu ta biến đổi như sau:
Mẫu : ( \(\frac{19}{1}\)+ 1 ) + ( \(\frac{18}{2}\)+ 1 ) + ( \(\frac{17}{3}\)+ 1 ) +...+ ( \(\frac{3}{17}\)+ 1 ) + ( \(\frac{2}{18}\)+ 1 ) + ( \(\frac{1}{19}\)+ 1 ) - 19  ( vì ta cộng với 19 số 1 nên phải trừ 19 )
\(\frac{20}{1}\)+  \(\frac{20}{2}\)+  \(\frac{20}{3}\)+...+  \(\frac{20}{17}\)+  \(\frac{20}{18}\)+  \(\frac{20}{19}\)- 19
=  \(\frac{20}{2}\)+  \(\frac{20}{3}\)+...+  \(\frac{20}{17}\)+   \(\frac{20}{18}\)+  \(\frac{20}{19}\)+ ( \(\frac{20}{1}\)- 19)
=  \(\frac{20}{2}\)+  \(\frac{20}{3}\)+ ...+   \(\frac{20}{17}\)+  \(\frac{20}{18}\)+  \(\frac{20}{19}\)+  \(\frac{20}{20}\)
= 20.( \(\frac{1}{2}\)+  \(\frac{1}{3}\)+...+  \(\frac{1}{17}\)+  \(\frac{1}{18}\)+  \(\frac{1}{19}\)+  \(\frac{1}{20}\))
=> \(\frac{Tử}{Mâu}\)=  \(\frac{1}{20}\)

12 tháng 5 2019

Phùng Quang Thịnh biến đổi sai 1 chỗ kìa 

-19 = \(\frac{20}{20}-20\)chứ mà bạn

Giải:

a)  \(\dfrac{7}{x}< \dfrac{x}{4}< \dfrac{10}{x}\) 

\(\Rightarrow7< \dfrac{x^2}{4}< 10\) 

\(\Rightarrow\dfrac{28}{4}< \dfrac{x^2}{4}< \dfrac{40}{4}\) 

\(\Rightarrow x^2=36\) 

\(\Rightarrow x=6\) 

b) \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\) 

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\) 

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\) 

\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\) 

\(...\) 

\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{8.9}\) 

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\) 

\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\) 

\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}\) 

\(\Rightarrow A< \dfrac{8}{9}\left(1\right)\) 

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\) 

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\) 

\(\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5}\) 

 \(...\) 

\(\dfrac{1}{9^2}=\dfrac{1}{9.9}>\dfrac{1}{9.10}\) 

\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\) 

\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\) 

\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\) 

\(\Rightarrow A>\dfrac{2}{5}\left(2\right)\) 

Từ (1) và (2), ta có:

\(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\left(đpcm\right)\)

25 tháng 5 2021

Bạn có thể viết thay dòng "Từ (1) và (2)" thành "Từ các điều kiện trên" bạn nhé !(bạn ko cần phải sửa, đây chỉ là gợi ý)hihi